

An Introduction To
Object-Oriented

Scientific Programming

Departments of Chemistry and
of Molecular and Cell Biology
University of Connecticut

Robert R. Birge
Harold S. Schwenk Sr.

Distinguished Chair of Chemistry
University of Connecticut

Storrs CT 06269-3060 USA

based on
Scriptor and MathScriptor Versions 3.6.2

Copyright University of Connecticut
January 2015

2

TABLE OF CONTENTS

1: Programming using Scriptor and MathScriptor . 3
This chapter introduces the Scriptor and MathScriptor environments and describes how
to run programs that are in either source code or compiled code format.

2: Introduction to Extended Basic . 33
An overview of object oriented programming in Scriptor.

3: Graphics . 62
An overview of the high level graphics available in Scriptor.

4: Numerical Methods . 96
An introduction to numerical methods in science and engineering.

5: Classes and Class Variables . 149
The power of classes is explored.

6: Advanced Topics . 157
The nature of objects and optimization of object-oriented programs.

7: Appendices:

Appendix 1: Language Reference Manual . 182
Appendix 2: Glossary of Programming Terms . 307
Appendix 3: ASCII Character Codes . 321
Appendix 4: Selected Mathematical Relationships . 324
Appendix 5: Fundamental Constants . 335
Appendix 6: Selected Conversion Factors . 337
Appendix 7: Table of Atomic Units . 340
Appendix 8: SI, cgs, esu, emu, Gaussian and Atomic Units 341
Appendix 9: Installing Scriptor and MathScriptor . 353
Appendix 10: Troubleshooting and FAQs . 355

3

Chapter 1
Programming using Scriptor and MathScriptor

MathScriptor, the programming environment used in this course, is designed to serve
two functions. First and foremost, Scriptor is designed as a teaching environment to
help students learn object oriented programming efficiently. The user interface has been
created to be as friendly as possible, and it can provide the student with syntax feedback
on a real-time basis. It is simple to learn syntax and fix errors when the correct syntax is
visible as one types. Second, MathScriptor provides the student with access to over 400
internal scientific, engineering, graphics and business functions that help carry out tasks
relevant to both course work and research. The purpose of this chapter is to introduce
the Scriptor and MathScriptor environments. A modest understanding of programming
is needed to fully appreciate some of the material, and those readers with no background
in programming may prefer to skim this chapter and return to it later after reading
chapters 2 and 3.

MathScriptor is a cross-platform Tabbed Integrated Development Environment (TIDE)
created using Xojo, an extended basic language developed by Xojo Inc.
(www.xojo.com). Xojo (previously called RealBasic) is a high-level object oriented
language that shares more similarities to Fortran 90, Pascal and C++ than to the original
versions of Basic. MathScriptor is an extended version of Scriptor which resides in the
same program, but which can only be activated by registered users. MathScriptor is
designed for scientific programming. Scriptor can also generate stand-alone
applications in the form of packages (see Appendix 1), but all applications developed
using Scriptor must be run within the Scriptor TIDE. This is not a limitation but an
advantage during the learning process because the student is freed from having to learn
the intricacies of writing code associated with a graphics user interface. And because
Scriptor is cross-platform, code written on a PC can be run on an Apple Macintosh
computer under OSX and vice versa. All Scriptor programs can be distributed to and
run by other Scriptor users. Furthermore, the Scriptor source code can be copied
directly into Microsoft Word while retaining the colored styled-text formatting which
provides the reader of the program with a better understanding of the program objects
and structure.

This chapter describes the options and capabilities of the Scriptor TIDE. A full
appreciation for these capabilities will necessarily require exploration of the
programming language elements that are presented in subsequent chapters. The primary
goal of this chapter is to outline the capabilities of each of the eight panels. It should be
emphasized that until you are comfortable and experienced in using Scriptor, you will
likely spend, and probably should spend, a majority of your time working in the Main
Panel.

4

1.1. The Tabbed Integrated Development Environment

The Scriptor TIDE opens up in the Main Panel as shown in Fig. 1.1. The window on
the left side is the text field into which the program is typed. The two windows on the
right-hand side provide a small graphics canvas at top and a text output window directly
below. The relative size of these two windows is adjustable using the slider at bottom
right of the panel or from within the program using the statement set_graphics_slider.
The small rectangular box directly above the set of buttons is an input text area, which
allows the user to enter data to be read by the program. Most programming work is
normally done in the Main panel and the program defaults to this panel when launched
(see below).

Figure 1.1. The Main Panel of the Scriptor TIDE. This panel provides the principal work area for writing and
testing your program. A small graphics canvas, a text output window and a user input window are provided. The
slider at lower right allows the user to adjust the relative size of the graphics versus text output windows. The user
input window is the small rectangular window just above the two rows of buttons. Templates can be loaded by
pressing the button at lower left.

The Scriptor program should be typed into the window on the left of the Main Panel.
Any functions or subroutines that are to be included in this window should be placed at
the top above the main program. You can also place subroutines, functions and/or
modules in a separate panel (“Objects”) as will be discussed later. As programs get
larger and more complex, it will more efficient to work on only a small portion of the
program at a time, and when your methods or classes have been debugged, make them
available to the larger program using the Objects Panel. Because the Main panel is such

5

a critical work area, a more detailed discussion of this work area is presented in Section
1.2.

1.1.1. Graphics and Text Panels

The main panel provides relatively small graphics and text output windows, but Scriptor
provides larger (nearly full-screen) versions of both types of output in the second and
third tab panels. The Graphics tab panel is shown in Fig. 1.2 and the Text tab panel is
shown in Fig. 1.3. You can write graphics to an invisible buffer (target=0), the graphics
window in Main (target=1) or the graphics window in Graphics (target=2). Graphics
can also be written directly to these windows. The Scriptor language provides a
complete set of graphics statements that will be introduced in Chapter 3. Writing text
output is simpler and will be discussed in Chapter 2.

Figure 1.2. The Graphics panel of the Scriptor TIDE. This panel provides the large graphics output area which is
addressed within a program by using target=2. The Save Buffer button allows the user to save the graphics to a user
assigned file on disk. This panel also allows the user to run a program and provide input to the program via either the
mouse or the user input field (the input field to the left of the stop button).

The graphics panel is the only panel which allows the user to enter data into a program
via movement and location of the mouse with reference to the graphics canvas, or a
picture presented inside the canvas. When the left or center mouse button is clicked
inside the canvas, the location of the mouse is loaded into the Xdown and Ydown edit
fields. When the button is released the location of the mouse is loaded into Xup and

6

Yup. Thus a mouse drag can be recorded and is available to the program if desired. If
you press the shift key while dragging the mouse over a section of the canvas, that
section is magnified into the entire canvas for inspection. The red rectangle that
indicates the mouse drag region can be turned on and off under program control.

The text panel is for the presentation of character output. All text output generated by
the Print statement is automatically sent to both of the text output windows (in Main and
in Text).

1.1.2. The Objects Panel

This panel is only relevant to MathScriptor programs. Objects are components of a
program that add a new behavior or capability to the program. An object oriented
programming environment provides programming objects that are encapsulated so that
the interaction of these objects with the other program elements is fully controlled. The
scientific programming environment provided by MathScriptor provides four types of
objects: Functions, Subroutines, Modules and Classes. These can be included in the
main program. But the Object tab panel provides four windows into which additional
objects can be loaded. This panel is shown in Fig. 1.4. Four object windows is not a
serious limitation, because one can have multiple functions and subroutines in the same
window. While only one class can be loaded into each window, a class can be as large
and complicated as desired. One can, for example, define one class that contains all of
your functions and subroutines, although that would not be recommended as it would
ultimately represent a poor choice with respect to organization and memory usage. In
practice one rarely needs more than two objects available (“instantiated”) in addition to
the Main program. The example shown in Fig. 1.4. shows an example in which four
classes are active at one time.

Figure 1.3. The Text panel of the
Scriptor TIDE. This panel provides a
large ASCII text output area and
whenever the Print(“…”) statement is
executed, the text in quotes is added to
the bottom of this window. You can
format output generated via the print()
statement by using the set_text_style
statement prior to the print() statement.
You can also format text input by hand
via access to the Style menu.

7

At this point we remind the reader that if you do not know what a class is, do not be
concerned. You will learn soon about functions, subroutines, modules and classes and
how these objects communicate with your program to enhance functionality. The
simplest of these objects are called functions. There are numerous internal functions
such as Sqrt(x), which returns the square root of the argument, x. Indeed, Scriptor
provides roughly 350 math, string and graphics functions which provide a rich
programming environment. But the principal power of programming derives from the
ability to create new functions as needed. This topic will be covered briefly in Chapter
2 and in more detail in subsequent chapters.

Note that in the previous paragraph, the first letter of Sqrt(x), was capitalized. Object
oriented programming languages are case insensitive, so the decision to write “Sqrt()”
with a capital S is one of personal preference. One can use any of the following strings
to represent the same function: SQRT(x), Sqrt(x), sQrT(x) or sqrt(x). The compiler
recognizes all of these functions as identical, and would treat the arguments X and x as
identical.

Figure 1.4. The Objects
panel of the Scriptor TIDE.
This panel provides four
text windows into which
Scriptor classes, functions
or subroutines can be
loaded using the Open
button. The instantiation
button at upper left of each
window must be checked
before the compiler will link
the object to the program
in Main.

8

Comments. Comments are critical parts of any program. The programmer should
provide enough commentary to make it clear what the code sections are doing.
Comments can be added to the program by using any of three identifiers: ‘, // or REM.
Note that once a comment identifier is found, all text that follows is ignored until an
end-of-line character is found. Thus you cannot use:

// Now we assign y to the square root of x, y=sqrt(x)

and expect the compiler to assign the sqrt(x) to the variable y. The compiler has no way
to know where the comment stops and where you want the coding to begin. The above
code is accepted by the compiler but the entire line is treated as a comment. One must
be careful to provide the compiler with clear directions. Object oriented programming
is powerful because it provides a framework that forces the code to be organized into
compartments that communicate with each other using well defined rules. Object
oriented code is easier to maintain by the programmer and those programmers that seek
to maintain or update the code of others. The Objects panel is nothing more than a way
to view objects and inform the compiler which of these are to be used and which are to
be ignored for a given run.

1.1.3. The Data Panel
The Data Panel is shown in Fig. 1.5 and provides a scientific spreadsheet. A scientific
spreadsheet differs from a free-form spreadsheet (for example, Excel) by treating each
row as a coupled entity. Carrying out a sort on any column will automatically keep the
rows intact. In a scientific spreadsheet, a row is viewed as an experiment where each
column represents a different measurement.

The spreadsheet can be created and modified under program control to have any number
of rows limited only by computer memory. However, a maximum of 64 columns is
allowed. Those familiar with programming will quickly appreciate how much easier it

Figure 1.5. The Data panel is shown at left.
This panel provides a single spreadsheet
window into which one can import standard tab
or comma delimited files. Scriptor spreadsheet
intrinsics are available to read and write to
individual cells or create a new spreadsheet
with assigned rows, columns and headers. One
can output the results of a calculation directly
into the spreadsheet, and save the spreadsheet
to a file to be read by users or other programs.

9

is to organize tabular or matrix output using the Data Panel of Scriptor than using the
text formatting statements available in Fortran, C or C++. The use of a spreadsheet
simplifies this process significantly by automatically organizing the fields in well
defined and visible rows and columns. Furthermore, the spreadsheet data can be
exported into Microsoft Excel or any spreadsheet program that handles comma or tab
delimited format. The data can also be exported as a figure for insertion into
presentations or papers.

Inserting or Deleting Rows and Columns. The Data panel includes a number of
buttons which are useful for setting up or manipulating the data. The first row of
buttons provide control over the insertion or deletion of rows or columns. A row is
defined as the data enclosed between two horizontal lines and a column is defined as the
data enclosed between two vertical lines. When you click on any cell within the
spreadsheet, the first click selects an entire row and the second click selects the cell
directly underneath the cursor. Thus you will normally see row-based buttons in the
first line. But if you select a header, you not only select the header, but the entire
column and the buttons in the first row now change their names to indicate column-
based activity. You can now delete the selected column, insert a new column to the left
of the selected column, or add a new column at the far right of the spreadsheet. You
have only one level of undo for any row or column deletions, so be careful. Any fancy
manipulation of rows and columns is best done under program control.

Manipulating Data. When you click on a cell, the data in that cell are written into the
small rectangular editfield to the right of the first row of buttons. You can modify the
data within this editfield by selecting the data and typing in a replacement. The data in
the cell within the spreadsheet are not modified until you press the update button. This
sequence is the only way you can modify a header. However, you have the option to
modify data directly within the spreadsheet by clicking a cell twice and typing directly
into the cell. Note that you must click within the desired cell twice to select it for direct
editing. The first click selects the entire row. The second click selects the cell for
direct editing. Direct editing does not work on a header which can only be modified by
using the editfield and the update button.

Resizing Columns. You can alter the width of any column by placing your mouse
cursor over the separators within the header region. The cursor changes from a single
arrow to a double arrow with a bar in between. If you press the mouse button at this
point, you can drag the bar to alter the column size.

Adjusting Column Alignment. Each column in the spreadsheet has a defined
alignment that can be set by selecting the header and using the Spreadsheet menu to
select left, right, center or decimal alignment. The latter option also allows you to shift
the decimal point to the left or the right within the column by using the shift menu

10

items. Pressing command+shift+< or command+shift+> allows for rapid adjustment
of the horizontal position of the decimal point.

Sorting Data in the Spreadsheet. If you select a column by clicking on the header,
you have the option to sort the rows by reference to the data in the selected column.
Scriptor always requires that the rows be kept intact so it is not possible to sort only a
few selected columns. The data can be sorted either numerically or alphanumerically in
either ascending or descending order. When the data in the column are a mixture of
numbers and alphanumerics you can still sort the data numerically, but all of those
variables that begin with a non-numerical value are interpreted to equal zero which
means they will be collected together between the negative and the positive numbers.
If an alphanumeric begins with a number, the number is extracted from the beginning
and used for sorting. Thus a numerical sort will yield the following list order: −4, −3.5,
−3abc, −2, abc, 3.1, 3.2abc, 3.3. To understand the details, it is necessary to understand
the nature of the data stored within a spreadsheet, the topic of the next section.

All of the Data in the Spreadsheet are Strings. The discussion of sorting raises an
important point that will become clearer when we discuss the programming statements
associated with manipulation of data sets in chapter 4. All of the spreadsheet cells are
populated by string variables, regardless of the nature of the data. Thus, if the data cell
contains the number 3.14159, it is stored in the form of a string [i.e.
spreadsheet_cell(row, column)="3.14159"]. The exclusive use of strings provides the
programmer with maximum flexibility in how the cell is populated and manipulated.
But the exclusive use of strings can cause unanticipated problems when there is a
mixture of numeric and alphanumeric in a column that is sorted. A numerical sort is
carried out by converting all of the cells to numerical values using the internal function
value(). This function is clever enough to convert "$dd.cc" to dd.cc, "12%" to 0.12,
"1.234E4" to 12340, "-12.456" to –12.456, "(12.456) to –12.456 as well as handle
comma delineators to convert "12, 345.67" to 12345.67. However, be warned that this
function will convert a mixed string such as 12.34abc to 12.34 and convert abc12.34 to
0. An alphanumeric sort is easier to understand in that the sort orders the list based on
standard alphanumeric (dictionary) ordering.

Importing Data. If you have a large data set in another spreadsheet program, you can
import the data (via important menu options) into Scriptor by saving the spreadsheet as
a comma or tab delimited file. Both options are provided by Microsoft Excel. You then
have access to all of the data within your program using the spreadsheet_cell(i, j)
statement, which returns a string.

11

Saving and Opening Spreadsheets. The two buttons at lower left of the data panel
allow the user to manually open or save Scriptor spreadsheets files. Scriptor uses a tab
delimited text format that can be read by other programs. However, the first few lines
of a spreadsheet file contain control information unique to Scriptor. These data are
clearly delineated from the spreadsheet contents and can be ignored or deleted.

Figure 1.6. The Music
panel provides program
access to 128 instruments
as well as a drum kit. The
keyboard at the top can be
used to test the instruments
and provides a visual
identification of notes when
they are played by hand or
under program control. This
panel provides a complete
programming environment
which can be used for
programs other than music
(see text).

12

1.1.4. The Music Panel

Programming should be fun. The Music Panel (Fig. 1.6) provides access to the 127 high
quality instruments that are available for free by downloading Quicktime from the
Apple Computer web site:

http://www.apple.com/quicktime/products/qt/

There are Quicktime versions for both Windows and Macintosh computers and you do
not need to purchase the professional version to have access to the instruments. When
you switch to the Music Panel, Scriptor checks to make sure that Quicktime has been
correctly installed and upon verification it displays the message:

Quicktime has been installed
and Midi statements are available

This statement only appears when the Music Panel is first selected, so if it is not visible,
try selecting a different panel and then returning to the Music Panel. Another way to
verify that the instruments are present is to play the keyboard making sure to adjust the
main computer volume so that you can hear the sounds. Note that the volume control
in the Music Panel (Fig. 1.6) is the local volume and that the master computer volume
control must be turned up for you to hear anything. On Windows XP, this volume may
be ignored and you will have to adjust the volume externally.

NOTE: Users of Scriptor versions higher than 3.5.0 that end in LLVM or XS can ignore
the Quicktime discussion and the installation test. In these versions, Quicktime has been
replaced by Core Audio. Core Audio is a cross-platform set of internal methods
included in modern Windows and Mac operating systems. If your operating system
does not include it, Core Audio can be downloaded and its functionality added. There is
no harm in having Quicktime installed on your computer, however, as versions of
Scriptor that use Core Audio will ignore Quicktime if it is present.

 Quicktime and Core Audio Instruments. The popup menu just above the slider lists
the instruments which are available along with the instrument identification number.
You will need to know this number if you are going to access the desired instrument
using software control. If you want to preview the sound, select this instrument using
the popup menu and play it on the keyboard by clicking on the desired note. The
number of notes that will play simultaneously is determined by the entry in the Max
Notes (<33) window directly below the volume. You can set this to any number from 1
to 32. If you are playing the keyboard and want to manually turn the note(s) off, just
click inside the keyboard window but above the keyboard. As you play, the notes are
marked on the keyboard. This option is also available from the program so you can

13

monitor the notes that are active during program execution. Details can be found in
Chapter 10.

Programming Features of the Music Panel. The Music Panel can be used for
programming and graphics applications without reference to any of the musical
instruments. This capability may seem superfluous but for some applications, the music
panel may be preferred. First, the programming window is larger. Second, the graphics
window is much wider than it is tall and for some graphics output, this canvas aspect
ratio is an advantage. You can open any of the program files into this window by using
the "Open" button, and when this button is used to open a program, it is automatically
placed in the Music Panel Programming Window. When you press "Run" the text
window is used to display the Text output. The graphics output can be directed to the
Music Panel Graphics Canvas, and you can remove the keyboard under program control
and replace it with graphics that you have created. The small rectangular window in the
lower right serves as the user input window. After the program has run and you have
examined the output, you can return to the program by pressing the "Undo or Show
Program" button and the output text will be replaced with the program. Those users
who prefer to do their programming within the Music Panel are often those working
with a small computer screen (800 x 600). The only disadvantage of working in the
Music Panel is that you do not have access to the help screen and keyword monitoring,
which are only available when you are programming in the Main Panel.

1.1.5. The Interface Panel

The interface panel serves two purposes. This panel will help the user test or interrogate
phidget interface boards that are connected to the computer via usb. These boards allow
manipulation of servo motors, stepper motors, and the reading of data from temperature
and light sensors, and many other instruments. There are a number of program
statements dedicated to controlling phidgets (see Appendix 1 for details).

When phidgets are not connected, this panel is used to provide a list of ASCII codes
which will be helpful to those programming. You have the option of replacing the
ASCII codes with the help screen by selecting the appropriate option in the preferences
panel. This option is particularly useful if you prefer to do your programming in the
Music Panel where no help screen is available. You can then flip back and forth
between the Music and Interface panels to provide access to a large programming
window and a full window help file.

14

1.1.6. Preferences

The final panel in the TIDE is the Preference Panel which is shown in Fig. 1.7. This
Panel will only be used occasionally. This panel is used to register your program, and
subsequently to set preferences. We will discuss registration first, and then go over
what some of the preferences represent. There are other preferences that are self-
explanatory, and the user has access to a description by placing the mouse pointer over
the preference and reading the text shown in the lower-right section of the preferences
panel.

Registering Scriptor. Development of Scriptor was funded by the National Science
Foundation, the National Institutes of Health and the Harold S. Schwenk Sr. Chair in
Chemistry at the University of Connecticut. Continued funding of program
development requires that we maintain metrics, and these metrics require that we stay in
touch with the users. To accomplish this goal, we require that all users of Scriptor be
registered so that we have contact information. Registration is free for students and
other academic users. Please fill out the appropriate registration form inside the
Registration_Emails folder and email this to rbirge@uconn.edu with Scriptor
Registration in the Subject line. You will receive an email in return with all of the
registration information. After receipt of the email, the easiest way to register the
program is to save the registration email, or the attached text file, in the
Registration_Emails folder. Next, open the text file using the "Open Registration
Email" button on the right-hand-side of the panel. If you prefer, you can enter your first
name, last name and Email address in the appropriate boxes and type in your license
key, which will be of the form xxxx-yyyy-xxxx-yyyy-xxxx in the five license key edit
fields. Then press "Register Program". If the process fails, check to make your name
and email address are identical to those provided in the registration email form. Each
user of Scriptor requires a separate license, but that license can be used on as many
computers as desired. Please do not share your license key with other users or use the
license numbers that can be found on the internet.

15

Figure 1.7. The Preferences panel of the Scriptor TIDE. This panel provides preference
settings on the left-hand side and a registration section on the right-hand side. The program will
need to be registered to gain access to the functions provided by MathScriptor as well as the
option of saving compiled versions of your programs. The Use Defaults button provides a
convenient way to initialize the preferences after you first register your program. Moving the
mouse pointer over a preference displays a brief discussion of what the preference does on the
right-hand side of the window.

Preference settings. Most of the preference settings are self explanatory. A brief
description of the preference is presented when the user positions the mouse pointer
over the preference description. Brief overviews of the more important preference
settings are presented below. Notice that the Use Defaults button should be pressed by
new users to select a default set of preferences considered appropriate for new users.

16

Startup in Simple Mode. Scriptor is designed to serve both as a learning tool and as a
high-level programming and numerical methods environment. Simple mode allows a
student to exclude external objects, which makes error checking faster and line error
analysis more accurate. Students should use this option during their early learning
experience until they need to make use of external objects. Experienced users should
also select this option when no external objects are required simply to speed up
execution.

Indent lines based on program structure. This
preference sets the option of using line
indentations to reflect program structure. Loops
and control statements are easier to follow if each
layer of the structure is similarly indented as
shown in Fig. 1.8. However, some find program
indentation annoying, particularly if they are
working on a small screen computer. This
preference panel allows each user to set this to suit
their visual preferences. The program structure is
only analyzed during a precompile which is
initiated when you click on the progress bar at the
bottom of the page or select clean code using the
menu item or ctrl-K (command-K on a Mac).

Analyze keywords as you type in Main Panel.
Scriptor has the useful ability to monitor the
program during entry and recognize any keywords
that you type. This capability is of significant
help during the early learning stages, and is turned
on when this preference is selected. For example,
if we move to a new line and type the word matrix we get the following display in the
text output editfield:

matrix_diagonalize(h2(), v2(), e1(), nsize, nroots)
matrix_gauss_jordan(a2(), b2(), nsize, ms)
matrix_invert(a2(), det, nsize)
matrix_print(a2(), nrows, ncols, ncols_per_set) as string
matrix_svd(a2(), v2(), w1(), m, n)
matrix_svd_backsubstitute(u2(), v2(), w1(), m, n, b1(), x1())

This listing presents all the functions that begin with the word matrix. If you then
continue typing "matrix_i", there is only one routine that matches and the output
editfield is updated to provide a brief discussion of the matrix_invert capability.

for i=1 to n1
 i1 = max(1, i-dspan_half)
 i2 = i1+deltaspan-1
 if i2>nmax then
 i2=n1
 i1=n1-deltaspan+1
 end if
 k=0
 hw=0.0
 for j=i1 to i2
 k=k+1
 hw = hw + hscore(j)
 next
 if k<>deltaspan then
 print(" error, k="+str(k))
 end if
 yh1(i)=hw/k
 ymin = min(ymin, yh1(i))
 ymax = max(ymax, yh1(i))
next

Figure 1.8. Example of marking up a
program using color to identify keywords
and line indentations to reflect program
structure.

17

matrix_invert(a2(), det, nsize)
use LU decomposition to replace the square matrix
a2(1..nsize, 1..nsize) with its inverse and return the
determinant in det. Provides the determinant but no solution
vectors. Most efficient method.

If matrix_invert is not the desired function, a simple backspace returns the full list for
inspection. The display provides rapid, real-time feedback and increases the efficiency
of programming significantly. It is strongly recommended that this preference be
selected during the early learning process. Real-time analysis does have one
disadvantage. Because the text output editfield is used to display the keyword options,
any output from the previous calculation is lost. Thus, there are situations when you
might want to turn this preference off. You can turn preferences on and off at any time
(but note that some preferences are only relevant during Scriptor startup).

Expand TIDE to 90% of available screen. &
Set TIDE at startup to width x height. These two preferences provide different methods
of controlling the size of the TIDE. The default startup size for Scriptor is a window of
size 800 by 600 pixels, which is the minimum size recommended. The first option
automatically sets the application size to 90% of the available screen. The second
option sets a specific size that you can enter by hand. It is easier, however, to turn this
option off, adjust the application size with the grow icon at the bottom right, and let the
program automatically set the width and the height values. Then when you have the
program at the desired size, select the option again and it will always startup with this
size. The fifth button has one additional attribute worth noting. If you ever want to
return to the original default size, unchecking this button automatically returns the
program to a window of size 800 by 600 pixels.

Open most recent work when program starts up. This preference provides the option of
starting up each Scriptor session with the identical environment that was present when
the program was shut down. This option is very useful if you are working on a
complicated program and want the next session to pick up where you left off. However,
this option should not be used in place of backing up your work in stages to make sure it
is not lost due to a crash, power outage or user incompetence. In that regard, it is worth
noting that each time you run your program, it is automatically saved inside your
Programs folder in a folder called backups. In the event that your program locks-up or
crashes Scriptor, you can retrieve the most recent version by directing the open dialogue
to this folder and selecting the most recent backup file. The state of the Scriptor
environment is only saved during a controlled Quit from the File menu.

Do not markup programs in color. When you do a precompile by pressing the progress
bar or selecting the precompile option from the Debug menu, the keywords and internal
routines are marked in blue, comments in red, compiler directives in green, and quotes

18

in purple. For some programmers, this is very helpful. For others, it is an annoyance.
You can turn colorization on or off with this preference. Note that turning off
colorization does not turn off structural indentation, which is controlled by a separate
preference. An additional reason to consider turning off colorization is that it can be a
slow process if the computer is slow or if the program is quite large. The speed issue
derives from the fact that Scriptor must carry out colorization within a rich-text
(stylized) editfield, and populating this field carries significant overhead. The loss of
speed is compensated by the ability to copy and paste programs into Microsoft Word
and most email programs without loosing the style information (font, text size and color
are preserved). This capability is particularly useful for students preparing a discussion
of their programs.

Use interface panel to show help screen. This preference allows the user to replace the
editfield in the Interface Panel with a full-width help screen. This option has the
advantage of providing the programmer with a help screen that is readily accessible by
simply selecting the Interface Panel rather than using the output text field in the Main
Panel. There are, however, two disadvantages. First, you are replacing the ASCII table
which is normally present on this panel, and for some applications the ASCII table may
be more useful. Second, it takes time to load the help screen and mark it in color, and
this latency can be annoying on slow computers.

Reduce eye strain in Main via background color. When checked, the user can select an
off-white color for the background of the editfields in Main. For example, selecting
RGB(250, 248, 243), which is automatically shown the first time this option is selected,
will significantly reduce eye strain by reducing the contrast between the program and
the background. If programming causes a headache, this preference might help.
Experienced programmers invariably use this option.

Double buffer all graphics. When checked, all graphics are double buffered prior to
display on any of the canvases. However, on Windows computers, all graphics are
automatically double buffered, so checking this preference will add one additional level
of buffering which usually results in no graphics display at all. In general, this
preference should only be used for the new cocoa Mac versions which are designed to
make use of this feature to provide optimal high-resolution, flicker-free graphics.

Update graphics every 2 seconds. When checked, a filled buffer will be transferred
automatically to the visible canvas every 2 seconds. This option is useful, particularly
for students who often forget to add the buffer_copy_to_canvas() statement. More
experienced users should turn this preference off as it can generate flicker during the
update process.

19

Figure 1.9. The Main Tab Panel provides the most flexible work space for writing and debugging programs. The
output editfield can display the help screen when desired. The relative sizes of the graphics canvas and the text
output editfield can be controlled by the slider at bottom right, or via program control.

1.2. The Main Panel

A majority of programming should be carried out in the Main Panel, because it is
designed to simplify and enhance the process. These capabilities come with some
degrees of freedom that require more detailed discussion. This section will provide the
necessary details and some suggestions to make the programming experience more
efficient.

When starting to write a new program, one needs to clear the programming window and
this is done by pressing the Clear Program button. When Clear Prog is pressed, a blank
header with sample declarations is created. If the shift key is pressed simultaneously
with Clear Prog, a completely blank program is created. If the option key is pressed
simultaneously, a scientific template including declared fundamental constants is
loaded. These options are explored more fully in section 1.2.5. Alternatively, you can
start out by opening a template program that does something similar to what you plan to
do (see next section).

20

Run Button. The Run button does two things. First, it checks the program for errors
and reports the errors in the text window on the right-hand side of Main. Second, if no
errors are found, the program is compiled and execution is started. For a typical
program, this process takes only a few seconds. If errors are found, however, each
error is reported with reference to a line number and the program is modified to display
the line numbers to help direct the programmer to the error (see Section on
understanding error messages below). After the errors are corrected, press the RESET
button and the line numbers are removed. (Line numbers can also be toggled on and off
using the “Add or Remove Line Numbers” menu item under the Debug menu. It is easier
to do this using the keyboard combinations: ctrl-L on windows or command-L on the
Mac The RUN button will then reappear and you can try to run the program again. The
cycle continues until the program compiles successfully. Sometimes the process fails to
return the RUN button due to background tasks that interfere with the update process.
You can force the RUN button to appear by pressing the Full Screen button twice.

Templates. The lowest left button in Main accesses the programs in the Templates
folder. If Scriptor is being used in a programming or numerical methods course, the
instructor will provide the class with a templates folder that includes examples relevant
to the class material. To access each template in alphabetical order, simply press the
button and monitor the name of the template as it is loaded. If you accidentally go past
the template you want, simply hold down the alt (or on the Mac, option) key and the
next button press will select the previous Template. More precisely, the alt (or option)
button makes each subsequent selection in reverse alphabetical order. To access an
individual template by name, hold down the shift key when you press the template
button. This operation will open up a dialogue box which will allow the direct selection
of a template by name. Templates serve three purposes. First, they provide short
examples of how to do certain tasks designed to be easily updated or modified for a
similar task. Second, they demonstrate programming techniques that are best illustrated
by example rather than textbook discussion. If you are new to programming in Scriptor,
stepping through the templates is an excellent way to learn. Third, the user can use the
Templates folder to store programs that will be reused later as templates for other
programs. To write and store a template is simple. Starting with a working program,
make sure it is well commented, remove any programming elements that you consider
are redundant or irrelevant, and rename the program so that the name begins with
"Template_". When this program is saved, it will automatically be placed in the
Templates folder.

In the event that the Templates button fails to open a template, the problem is invariably
due to running Scriptor outside of its environment. The Scriptor program must be in a
folder that also contains the Programs, Templates, data_sets, etc. folders that are used by
the program as critical resources. Although there are times when one may wish to make
a copy of the program and run it in a new location, if one wants access to templates, the

21

Templates folder must also be copied and moved into the parent folder. And if
MathScriptor is to be used, many of the math functions require access to files within the
data_sets folder.

The Help Screen. The Output editfield serves a dual purpose. When a program is
running, this editfield is used by the Print statement. But while you are writing a
program, you can select the preference “Analyze keywords as you type” , this output
field will be used to provide real-time analysis of the code that you are typing in. A
description of this capability was provided in the above discussion on preferences, and
is turned on be checking the "Analyze keywords as you type in Main Panel" preference.
An alternative is to press the help key and load the help screen. The help screen comes
in two versions. Normally, a relatively short Help Screen is loaded which provides a
discussion of each keyword and can be scanned quickly using the scroll bar. If you
press the shift key, a longer version of the Help Screen is loaded which provides a more
detailed discussion of the elements of the Scriptor language. Appendix 1 of this book
provides a more detailed discussion of the language.

You are welcome to modify the help screen (either the short or long version) with your
own comments and clarifications. If you do, make sure you save the revised file by
pressing the Save Help button. You would be well advised to save backup copies of
the original short (bschlp_short.txt) and long (bschlp.txt) help files prior to making any
significant changes. The backup can be created by using the Save Help button or simply
selecting and duplicating the files, which are found in the help_files folder.

Open and Save Buttons. These buttons are used to open programs and to save the
current program. Programs can be stored anywhere the user wishes, but the optimal
location is within the Programs folder. You can add folders inside the Program folder to
help organization.

The Trash Button. If you have a file in any of the folders within the Scriptor
Environment that you wish to delete, it is often convenient to carry out the process from
the Main panel by pressing the Trash button and directing the window dialogue to the
desired file. The selected file is moved to the Trash folder inside the Scriptor
environment. If you make a mistake, you can always move the file by hand to the
original or alternate location. The theory behind using a Trash folder is safety. An
accidental “trashing” is easily fixed and the trash process is cross-platform in scope.

22

Understanding error messages. While you are in the Main Tab Panel, you have
access to a number of menu items that help debugging. When an error occurs, the
compiler does its best to identify the line number in which the error occurred. Errors are
then printed out as shown in the following example:

 line | error number and error message
0025 | Error No. 11, Undefined identifier.
0030 | Error No. 1, Syntax does not make sense

Versions of Scriptor ending in XS or XSC use a slightly different error presentation in
which the Error No. is replaced with a description and identification of the actual error
in the line within brackets {}:

Program errors are listed below:
E/W | line number, error, {bad code}
E | 0012 | Undefined identifier. { hu1 }
E | 0013 | Undefined identifier. { vall2 }
W | 0014 | Converting between types causes a possible loss of precision,
which can lead to unexpected results. { 1\3 }

Note that the XS and XSC versions also provide the option to print out warnings,
situations where the compiler has identified either unsafe or poor programming practices
which can lead to errors.

In versions 3.5.0 and beyond, the line numbers are automatically added to the program,
and those with errors (not warnings) are marked in red. Errors must be corrected before
the program will run. Warnings should be examined but most can be ignored. If you
are instantiating objects from the Objects Panel, these objects are added at the top of the
script to be compiled. Now you must select Display Script on Run from the Debug
Menu if you are to track down which line is involved in generating the error. Your
program will be replaced with a line-numbered version that includes all of the expanded
source code. The resulting code can be quite large but you should have no problems
tracking down the error. But do not make changes in this expanded version of your
code. Identify the location of the error and then select Restore Program after Script
Display to return the program for modification. If you make changes in the displayed
script, the changes will be lost upon restoration. If you have numerous errors, you are
advised to print out the program and mark down the error locations by reference to the
displayed script. Then restore the program and make the changes by reference to your
printout.

Handling Properties. Many of the common programming errors involve misspelling
Scriptor methods or using an incorrect number or ordering of the calling parameters.
These errors are best handled by making reference to the online help or using Appendix
1 to examine the method calls. These errors are usually easy to fix. One of the more

23

frustrating errors to encounter is Err(11), an undefined identifier. An identifier is a
generic term that is used to represent a named property or object. The term is purposely
vague because when the compiler encounters something like blimdiddy(i), and
blimdiddy() is not declared or defined as a subroutine or function, the compiler is
incapable of figuring out whether the programmer intended blimdiddy(i) to be a
function, subroutine or array variable. If the programmer meant to define a function, for
example, this error suggests the reference was not spelled correctly. But if blimdiddy()
was intended to be an array, then this error suggests it has not been declared, or declared
with a different spelling. At this point it is often very helpful to get a list of all the
variables that have been declared in the program, or have been defined by other objects
as public properties. Under the debug menu you will find two menu options:

List Public Properties and
List Main Program Properties

By selecting one of these items you generate a list of the requested properties in the
output editfield. Note that when the second option is chosen, all of the properties
available to the Main Program (either defined within Main and or provided by external
objects) are listed. Below is a typical example.

a2(1, 1) [double from line 8, redimmed in line 15]
i [integer from line 9]
imod [integer from line 9]
masterlength [double = 3.0 from public(geometry)]
nbasis [integer from line 9]
nc [integer from line 9]
nradius [integer from line 9]
nside [integer from line 9]

========== global constants follow ============

const_degree [global double = 0.0174533...]
const_e [global double = 2.7182818...]
const_pi [global double = 3.1415927...]

The variables are listed in alphanumeric order regardless of the order in which they were
declared. This helps one track down the variable in the list. Furthermore, if an array
variable is redimensioned anywhere in the program, all such events are listed and the
line number is shown. If there are any classes instantiated, the public variables declared
are also shown. In the above example, one such variable is found, masterlength. This is
a double which was defined as a public variable in an instantiated class called
"geometry". It matters not that this class is relevant to the program, only that it has been
instantiated. Finally, after all the user defined variables are listed, the Scriptor global
constants are listed whether or not they are used. Indeed, the property listing does not
check to see if any of the variables are used in the program, only if the variables are
available to the program. This listing is invaluable when tracking down variables in

24

the program, either those that are undefined or when the compiler identifies a variable
that has been declared more than once. As a reminder, although dim statements can
appear anywhere in a program, one can declare a variable only once. A redim statement
does not count as it only redefines the upper bounds of, and the amount of memory
allocated to, a previously declared array. One can have as many Redim statements as
your programming requires. Keep in mind that when an array is redimmed to smaller
dimensions, the memory immediately becomes available for use by the program. If one
is working on a program that makes heavy use of RAM, one should Redim arrays to
minimal size whenever possible to maintain maximal available memory. However, one
cannot Redim an array to a smaller size and then Redim the array back to its original
size and expect previous data in the excluded region to be valid. When an array is
Redimmed to larger size, Scriptor sets the new elements created to zero or to nil,
depending upon data type. However, elements that are contained within a subscript
region not affected by the Redim statements remain valid and do not lose values
previously assigned.

1.2.1. Listing Internal Methods via Category

There is a good chance that a particular function or set of functions needed to carry out a
given programming task is available in Scriptor or MathScriptor. However, there are
more than 500 internal methods that are part of the extended language and there is no
point in trying to memorize them. Thus, the programmer will often need help tracking
down the desired function, particularly when starting a project on a new topic. The
help menu includes a List of Methods and Properties menu item under which are eleven
categories. Selecting the menu item generates a list of all functions relevant to that
topic. The methods are collected and listed in the Main panel text output field with
enough discussion to not only indicate what the functions do, but how to use them.
These menu selections are often the fastest way to track down a desired method.

1.2.2. Running in Simple Mode

The ability to use classes, modules, or methods from the objects panel provides
considerable flexibility and allows the user to concentrate their programming work on
that portion of the program that is being created or modified. However, when one is
first learning how to program, using external objects adds additional degrees of freedom
that often cause confusion. The Simple Mode option under the Debug Menu
constrains the compiler to only collect code from the Main Program Editfield (when in
the Main Panel) or the Music Program Editfield (when in the Music Panel). This makes
debugging easier, makes error identification by line number more accurate, and speeds
compilation even when no external objects are instantiated. It is recommended that

25

students use Simple Mode during the first semester course. This mode can easily be
turned off when external objects are required.

1.2.3. Organizing Declarations

A complicated program can have hundreds of user variables of different types. Each
variable represents an object, and the rules of object oriented programming require that
all variables be formally assigned. This rule makes it much easier for others to read and
understand your program, and much easier for you, the author, to find errors or enhance
the program. Variable declarations can be placed anywhere in the program the user
desires, a flexibility made possible by a multipass compiler. However, this is bad form,
and readability is enhanced if all the variable declarations are collected at the top of the
program. Readability is further enhanced if the variables are listed in alphabetical order.
To make this process simple, the Scriptor metacompiler can collect all the variables
declared in the Main program, organize the variables by type, alphabetize the variables
and place the declarations at the top of
the program. This is accomplished by
selecting the Organize Declaration in
Main under the Edit Menu. The key
combinations ctrl-D (or command-D
on Mac OSX) also activate this menu
item.

1.2.4. Graphing the Program
Structure

The combination of loops and
conditionals can often lead to
structural complexities that are hard to
follow, even when the programmer is
the creator of the structural
complexities. Although program
indentation is helpful to an
understanding of the structure, for
high levels of structure, this tool is of
limited value. A more sophisticated
tool is available. A graph of the
program structure like that shown at
right can be generated by marking the
region to be graphed using triple
slashes (///) above and below the

26

target section. Not only does this graphics image help display the structure, it is
invaluable in tracking down structural errors. If a grey line connects two statements that
are not structurally related, such errors are easily spotted visually and the error fixed.
Program graphing is also useful if one seeks to insert a structured overview of the
program in a presentation or manuscript. Although the graphing method does not
formally limit the length of the program, in practice, the program should be divided up
into sections of less than 150 lines each to generate readable graphs.

1.2.5. Loading Simple and Complex Templates

While every program is different, there are a few elements that are common to the
majority of programs. Very simple templates can be loaded by pressing the Clear Prog
button at lower right. If the button is pressed by itself, the following collection of
declarations are loaded. These provide a useful start for general scientific programming.

// Program Name: progname.txt
// by Ruffus Fourier (2008-11-28 15:33:45)
// This program ...
dim i, j, k, m, n, ns, np, nfile, icw(1) as integer
dim x1, x2, y1, y2, x(1), y(1) as double
dim s0, s1, s2, fname, fcontents, lines(1), hdrs(1) as string
dim Q, Q1, Q2 as boolean

If the shift key is held down while pressing the Clear Prog button, no declarations are
provided and a minimal header is presented.

// Program Name: progname.txt
// by Ruffus Fourier (2008-11-28 15:33:45)
// This program ...

A third option is to hold down the alt (or option) key while pressing Clear Prog, to
generate the following scientific template.

// Program Name: progname.txt
// by Ruffus Fourier (2008-11-28 15:39:28)
// This program ...
dim a0, a1, alpha, c0, Eh, epsilon0, G, h, hbar, k, kappa as double
dim masse, massn, massp, massu, Na, Qe, Qohm, Ryd, u0 as double
dim s0, s1 as string
// 2006 CODATA values (Rev. Mod. Phys. 80, 633-730 (2008))
masse=9.10938215E-31 // kg (mass of electron)
massp=1.672621637E-27 // kg (mass of proton)
massu = 1.88353130E-28 // kg (mass of muon)
massn=1.674927211E-27 // kg (mass of neutron)
a0=5.291772108E-11 // m (au length = bohr radius)
Qe=1.602176487E-19 // C (charge on electron) 2008
hbar = 1.054571628E-34 // J•s (h/2pi = Dirac `s constant)
h = 6.62606896E-34 // J•s (Planck `s constant)
c0 = 299792458 // m/s (defined speed of light)
Eh = 4.35974417E-18 // J (Hartree- au of energy)
Ryd = 10973731.568527 //m^-1 (Rydberg constant)

27

alpha = 7.2973525376E-3 // fine structure constant
kappa = 8.9875517874E9 // 1/(4*pi*e0) N m^2/C^2 (coulombs constant)
Na = 6.02214179E23 // mol^-1 (Avogadros number)
G = 6.67428E-11 // m^3/(kg s^2) (gravitational constant)
k = 1.3806504E-23 // J/K (Boltzmann constant)
Qohm = 12906.4037787 // ohm (h/(2*e^2))
u0 = 4*const_pi*1.0E-7 // N/A^2 [magnetic constant (exact)]
epsilon0 = 1/(c0^2*u0) // F/m (electric constant)

The physical constants selected are relevant to many of the calculations that students
encounter in undergraduate science courses or research. The programmer can easily add
additional physical constants or variables, and remove those that are unneeded. The
user also has the option of selecting one of the more substantive templates which are
stored in the Templates Folder. And it is important to remember that new templates can
be added at any time by simply naming the program with the header “template_”. The
save process will then preferentially place this program in the Templates folder and the
program will be available by pressing the templates button.

1.2.6. Auxiliary Program Work Window

A new program may require the incorporation of sections from one or more other
programs that were saved previously in the program folder. Under these circumstances,
it is convenient to have the source
programs open simultaneously to
facilitate copying and pasting.
Method and code transfers like this
are easily handled by using the
Auxiliary Program Work Window
which is opened by selecting “Open
Program Work Window” under the
File Menu. An example instance
of this window is shown at right.
As many as three other programs
can be opened and placed in the
three slots provided by this
window. The individual programs
are loaded into the window buffers
by pressing the Open Program 1,
Open Program 2 or Open Program 3
buttons. Only one program is
presented in the work window at a
time, and the active program is
selected using the radio buttons
directly above the Open Program buttons. One can copy and paste between this window

28

and the Program Editfield in either direction. One can also flip any of the three
programs with the Main Program by pressing the appropriate button. As of this writing,
the “Convert to Arprec” and “Convert to Thread” buttons have not yet been
implemented fully. Feel free to experiment if interested, but do not expect competence.
This window is designed to always float in front of the Main Window, but can be
hidden by pressing the Hide button. The window can then be returned by pressing the
text “click here to restore work window” underneath the slider at lower right on the Main
panel. The window is closed permanently by pressing the Close button.

1.2.7. The Debug and Optimization Window

After a program has been debugged and is working as desired, it is important to do a
final check and optimization process. This process is facilitated by transferring the
program to the Debug and Optimization Window which is accessed under the Debug
menu and selecting Open Debug Window (ctrl-W) or (command-W on Mac). This
window provides a systematic analysis of the variables used in your program and allows
one to remove any declarations to variables that are not used in the program. The
process must be done in a particular order as follows:

1. List Errors: This button generates a list of errors. Any errors must be fixed before
proceeding to the variable optimizations listed below.

2. Expand Declarations: This button expands the declarations to one line per
variable. This operation is necessary before pressing "Remove All Unused Variables".

3. Remove All Unused Variables: After you Expand Declarations this button will
remove all variables in the program that are unused. The variables removed will be
listed in this window.

4. Organize Declarations: This button collects and alphabetizes all of the variable
declarations into a minimum number of statements.

The XS and XSC versions of Scriptor will also provide a button for listing compiler
warnings. Most of these warnings can be ignored, but if one plans to distribute a
program to other users, each warning should be considered seriously.

29

1.2.8. Tips

Sometimes guidance in programming or using the programming environment is most
efficiently presented in graphical form. In Scriptor, graphical help files are called tips
and can be accessed under the Help menu by selecting either “Show Next Tip” or
“Show Previous Tip”. The tips are presented in the graphics canvases in both the Main
and Graphics Panels. Some selected tips are shown below.

30

31

32

33

Chapter 2
Introduction to Scriptor Extended Basic

The extended basic language available in Scriptor is similar to the languages of Visual
Basic and Xojo. Scriptor is based on XojoScript, a compiler provided by the Xojo
Extended Basic language, the parent language that was used to create Scriptor and
MathScriptor. The capabilities have been enhanced by including roughly 500 additional
math and graphics functions, and some of these functions are only available in
MathScriptor. A registered user can switch between Scriptor and MathScriptor under
the Compile menu. This chapter provides an overview of the language in enough detail
to allow the student to understand the programs that are introduced and just enough to
allow them to modify the programs to suit their requirements. Additional resources are
provided in appendices. The most important is Appendix 1, which provides a list of all
the functions that are available as well as the calling procedures. Appendix 1 also
provides a more detailed discussion of the language.

Introduction. The Anatomy of a Program

We start by examining a simple program that calculates the Fibonacci series, made
famous by the book “The Da Vinci Code”. This series could easily be calculated by
hand, but serves as a useful target for a programming example. The program is shown
below and is annotated with comments to provide a brief introduction into the key
statements. It is important to include numerous comments throughout your program,
not only for others, but for yourself. Although Extended Basic is a high level language
that has a syntax designed to enhance clarity of function, comments are still important to
provide a perspective on what the code is doing. We will use this program to introduce
the key components. You can find a copy of this program in the book_examples folder
inside the Programs folder. Here we examine the elements of this program in detail.

34

35

2.1. Initialization

The first part of the program assigns memory to variables, initializes the variables and
initializes the environment.

2.1.1. Program Identification Line

Although it is optional, using the following syntax for the first line of the program will
automatically assign the file name when you save the program.

// Program Name: my_program_name.txt

The next few lines should also be comments lines. These lines should provide the name
of the programmer and a brief discussion of what the program does and how to use it.

2.1.2. Declare Variables by Type

Computer programs use named variables for temporary storage of numbers or
characters. The names are for the convenience of the programmers and can be as many
as 64 characters in length and include upper and lowercase letters and the underline
character. For example, the program

dim this_is_a_ridiculously_long_variable_name_but_it_is_legal as double
this_is_a_ridiculously_long_variable_name_but_it_is_legal = sqrt(3)
print(str(this_is_a_ridiculously_long_variable_name_but_it_is_legal))

will print out 1.732051. Although some languages such as Fortran 77 automatically
declare variables as they are encountered in the program, this automatic process is one
of the main sources of programming error in such languages and is no longer considered
good practice. Scriptor requires that all variables be declared prior to usage, and this is
done using the dim statement. The dim statement can declare more than one variable
of the same type. For example, dim s0, s1, s2 as string, declares three variables s0,
s1 and s2 as string variables. These are variables that hold text, and the text can be of
any length. There are many other data types. The most common types are listed below:

36

Integer (32-bit whole numbers in the range ± 2, 147, 483, 648)
Int64 (64-bit whole numbers in the range ± 9, 223, 372, 036, 854, 775, 807)
Single (32-bit positive or negative 7 digit real values between
 1.175494 x 10-38 and 3.402823 x 10+38)
Double (64-bit positive or negative 15-16 digit real values between
 2.2250738585072013 x 10-308 and 1.7976931348623157 x 10+308)
Currency (64-bit fixed point variable with 15 digits to the left of the decimal point and
 3 digits to the right of the decimal- used for business and accounting accuracy)
Boolean (1 bit: true, false)
String (ASCII characters of arbitrary length – see Appendix 3)
Color (32-bit color specification, e.g. RGB(255, 255, 255))
Const (any variable type, but once defined, cannot be changed via assignment in the
 program)

Upper and lowercase letters are treated the same which is a very important difference
between Scriptor and Mathematica, which uses a case sensitive syntax. Most object-
oriented languages are case insensitive for enhanced readability and ease of debugging.
For example, the variable apple and Apple are different variables in Mathematica, and
that is a perfect recipe for introducing programming errors.

2.1.3. Declare and assign variables as constants

It is sometimes useful to use constants. These are variables that once assigned, cannot
be reassigned by the program. For example, the value of pi is not going to change as
any point in the life of your program, so it is appropriate to assign it as type Const.

Const Pi=3.1415926535897932384626433832795

Now when this variable is used, you can be confident that it will always have the correct
value. Scriptor provides the const_pi and other selected constants as part of the
language (see Appendix 1).

2.1.4. Assign values to variables via default or during declaration

Declaring a variable in a dimension statement assigns a default value to that variable.
The default value for all numerical variables is zero. The default value for all string
variables is the null string = “”. The default value for color is black = RGB(0, 0, 0). It
is not considered good practice to rely on these defaults, but it is important to know that
these assignments are made. You can assign a value to a variable during declaration, as
demonstrated in the examples below:

37

dim red as color = rgb(100, 0, 0)
dim months_in_a_year as integer = 12
dim x as double = 32.5

2.1.5. Assign values using the “=” sign

The value of any standard variable can be changed by using an assignment statement,
for example:

x = 19.7

First time programmers are often confused by the use of an equals sign to assign a
variable. This confusion is understandable because the equals sign serves a dual
purpose in programming, and the most common usage is not mathematical but variable
assignment.

The equals sign initiates the following two step process:

(1) evaluate the expression to the right of “=”

(2) transfer the result of the evaluation to the memory
location associated with the variable to the left of the “=”

The equals sign is an appropriate symbol to use in the sense that after the operation is
finished, the left and the right hand sides do indeed have equal values or when
evaluated, yield identical results.

When it is necessary to assign large values, use either the common “E” symbol to
indicate exponent, or use the Mathematica-like statement, 10^ :

a = 1.234E128
a = 1.234*10^128

Both statements assign the value 1.234 x 10128 to the variable a.

2.1.6. Initialize the Output Environment

The next step is unique to the Tabbed Panel Environment of Scriptor. We now set up
the environment so that our program will have access to the appropriate output
environment. If we are only interested in printing out numbers, the graphics canvas in
Main is of no use so we replace it with a pure text editfield. We can do this with the
statement set_graphics_slider(0) which means set the graphics slider to 0% size. The

38

default when the program is run is a 50:50 space allocation with graphics and the text
output field set to equal size. The next step is to clear the text output which is done
using the statement clear_text_output(0). The zero in parentheses in this case means
clear both the editfields in both Main and Text panels. Remember, if you forget what
the parameters of any internal function mean, all you need to do is type in the function
or back into the name of the function and if you have the “analyze keywords as you
type” preference set, a description of the function and its parameters will appear in the
editfield on the right-hand-side.

2.1.7. Arrays, Vectors and Matrices

We close this section by introducing some new data types that are particularly useful for
numerical methods. Arrays are variables that allow for the storage of multiple numbers
or strings by using a single variable name and subscripts to access the elements. Arrays
can use any data type and can by dynamically redimensioned in the program by using
the Redim statement.

Arrays are assigned by type in the dimension statement, for example:

dim a1(20), a2(10, 20) as double

creates a one-dimensional array a1 with 21 elements and a two-dimensional array a2
with 231 (11 by 21) elements. The reason there are more elements than the product of
the dimensions is that all the arrays have zeroth elements. That is, if the array a2 is
dimension a2(1, 1) it has four elements: a2(0, 0), a2(0, 1), a2(1, 0) and a2(1, 1). You
may choose to ignore these elements, but they exist and occupy memory.

It is often useful to manipulate the size of an array based on conditions that can only be
determined during the execution of the program. To handle these situations, one can
declare nil arrays by using the following syntax:

dim a1(-1), a2(-1, -1) as double

and then assign the size during runtime using the redim statement:

redim a1(8)
redim a2(3, 4)

The rule is that a single redim statement is required for each array, that the variable type
of the array must have been declared in a prior dim statement, and that one cannot use
the redim statement to alter the variable type (i.e. redim a1(8) as integer is not allowed).
In contrast, redim statements involving the same variable are allowed, so one can create

39

a nil array, redimension it to hold all the necessary data, and then redim the array back
to nil when the calculation is done using the following statement:

redim a2(-1, -1) // recover all memory allocated to a2

The capabilities inherent in the redim statement are significant. This means that a
program can allocate memory to an array variable and then recover the memory under
program control. There was a time in the history of computing when such capabilities
were unavailable to the programmer and thus very fancy and complex methods were
used to have variables share memory (e.g. use of common within Fortran IV). The fact
that Scriptor provides this capability is a tribute to the sophistication of modern
languages (and Xojo Inc. which wrote the compiler).

We note that the term array is used to describe both one and multidimensional arrays.
Indeed, one can create an array with as many as 16 dimensions if desired. And the
current size of an array can be determined by using the function ubound(array_name,
dimension) to discover the current size:

dim a12(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) as double
dim i as integer
i=ubound(a12, 8) // find the current size of the 8th element
print(str(i)) --------------> 8

One needs to take care when working with multidimensional arrays, as they require a
great deal of memory. For example, the above 12-dimensional array has 13! = 6, 227,
020, 800 elements each requiring 8 bytes of memory, which totals roughly 50GB
(gigabytes). It is unlikely that you computer has 50GB of RAM. Modern operating
systems, however, may allow one to run this program by paging memory to the disc
drive.

Quite apart from the large memories required to utilize multidimensional arrays, access
to any arrays larger than two dimensions is slow. The compiler optimizes access to one
and two dimensional arrays, but arrays using more than two dimensions are accessed
relatively slowly compared to other variables. Limit your programs to one or two-
dimensional arrays whenever possible if speed is an issue.

MathScriptor provides a large number of functions and subroutines that work on one
and two-dimensional arrays. These functions will play an important role in many of the
numerical methods to be discussed in chapter 4.

40

2.2. Math

We now have our variables declared and initialized and our output environment set up
for the task at hand. The next step is to do the math and display or print the results.
First we examine how we can do math with Scriptor.

There are four discrete types of math capabilities in Scriptor and MathScriptor. The first
type are the standard math functions available in almost all computer languages. These
are listed below:

Exponentiation can be also be done using the C-type operator pow(a, b), which is
equivalent to a^b. There are hundreds of additional math functions built in. For
example, the log and exponential functions are as follows:

exp(x) = e^x where e is the irrational constant 2.718281828459
log(x) = natural logarithm of x = ln(x)
log10(x) = logarithm of x to base ten.

All of the standard trigonometric functions are available

sin(x), asin(x), cos(x), acos(x), tan(x), atan(x)

and these functions operate by default on radians. Thus, if you want to use arguments in
degrees, you must multiply the argument by the number of radians per degree which
equals 2 π divided by 360 = 0.0174533. A full precision representation of this number
is included as one of the intrinsic constants and is called const_degree. Hence, if you
seek to assign the variable b to equal cos(45°) then use

b = cos(45*const_degree)

41

The following hyperbolic trigonometric functions are also available:

 sinh(x), asinh(x), cosh(x), acosh(x), tanh(x), atanh(x)

These functions are invaluable for working with differential equations, and using
Laplace’s equation in Cartesian coordinates in electromagnetic theory, fluid dynamics,
heat transfer and relativistic quantum mechanics. These functions have interesting and
useful relationships with the other trigonometric functions and complex numbers (see
Appendix 4, Equations A4.1.13 – A4.1.24).

All of the above functions are not only available for use with singles and doubles, the
standard data types for math, but also with string representations of numbers. For
example,

 s0 = "3.14159"
 s1 = cos(s0)
 print(s1) --------> -0.9999…

is acceptable syntax. (The long arrow indicates the printed output and is not part of the
expression.) The reason that strings are also accepted is to provide for complex
arithmetic as well as arbitrary precision arithmetic, the latter requiring Scriptor. In
Scriptor, a complex number is represented by using a string and separating the real and
complex components by a comma:

s0 = "2, 2" // 2 + 2*I
s1 = cosh(s0)
print(s1) --------> -1.56563 , 3.29789

42

2.2.1. Ordering of Math Operations

Scriptor obeys the standard rules of math operator precedence. Calculations are carried
out in the following order (the lower numbered items are done first):

1. Inside Parentheses
2. Exponentiation
3. Multiplication and Division
4. Addition and Subtraction
5. Left to Right
6. Comparison Operators (Left to Right)
7. NOT (right to left)
8. AND (left to right)
9. OR (left to right)

Note that parentheses take highest priority, and thus the user is in complete control of
how the math and logical operations will be carried out. Put another way, parentheses
can override operator precedence and force addition to be carried out before
exponentiation as shown in the following example:

 2 + 3^2 + 4 --------> 2 + 9 + 4 = 15
 (2 + 3)^(2 + 4) --------> 5^6 = 15625

Programmers quickly pick up the concepts of math precedence, but often get confused
when writing logical operations which often seem to give results that are contrary to
intuition. We examine logical operations in the next section.

2.3. Logical Expressions

A Boolean (or logical) statement is one which evaluates to either true or false, and
involves the use of both comparison and logical operators, and can include the Boolean
variables True or False. The comparison operators are listed below:

Operator Meaning Evaluates to true if… (otherwise evaluates false)
< less than LHS is less than RHS

<= less than or equal to LHS is less than or equal to the RHS
> greater than LHS is greater than the RHS

>= greater than or equal to LHS is greater than or equal to the RHS
= equal LHS and RHS are equal

<> not equal LHS and RHS are not equal

where LHS means a number or expression on the Left-Hand-Side of the operator and
RHS means a number or expression on the Right-Hand-Side. For now we will limit our
discussion to math expressions, but these operators also work on strings (see below).

43

There are three additional operators that are available which when combined with the
comparison operators allow for complete flexibility in conditional analysis. The
additional operators are: AND, OR and NOT.

These operators mean what they say. But their order is important. Consider the
following:

 2<3 or 3<2 and 4<3 or 3<2

Try and evaluate this and see what you get. Now lets do it systematically. The
comparison operators are evaluated first and so the above expression can be rewritten
as:
 true or false and false or false

The AND operator takes precedence over OR so it is evaluated next. false and false

 true or (false and false) or false ----> true or false or false

The rest is evaluated from left to right so we get

 (true or false) or false ----> true or false ------> true

If your initial evaluation of this expression came out false, join the crowd. Our language
sense drives us to see the AND operator as one which should be evaluated at the end,
not the beginning. Thus, most of us would parse the above problem to have the
following operational ordering:

 (2<3 or 3<2) and (4<3 or 3<2) ------> false

which is incorrect! The above example demonstrates why it is strongly recommended
that parentheses be used in logical operations even when they are not needed.
Parentheses are also recommend when writing complicated math expressions. In both
cases, parentheses help the programmer observe the expression with greater clarity and
avoid making mistakes.

A simple way to check for the value of an equality is the following three line program:

dim Q as boolean
Q=2<3 or 3<2 and 4<3 or 3<2
print(convert_to_string(Q))

The function, convert_to_string, works on any variable type and converts it to a string
that can be printed. In the present case, when the program is run, the output is “true”.

44

There is an additional operator available, XOR, which stands for exclusive or.

This operator returns true if the LHS and RHS expressions evaluate to different states.
A summary of all of the operators is shown below:

Q1 Q2 Q1 XOR Q2 Q1 OR Q2 Q1 AND Q2
true true false true true
true false true true false
false true true true false
false false false false false

2.4. Conditionals

One of the most important capabilities available to a programmer is the use of
conditionals to mediate program flow. Conditionals are statements that test for the state
of a logical expression and then select a section of code based on the state of the logical
expression.

2.4.1. The If Statement

The If statement coupled with the Else or Elseif statements is the most commonly used
conditional and exists in one form, or another, in all high level languages. The one-liner
form of this statement is,

If testcondition1 Then statement1 Else statement2

where statement1 is executed only if testcondition1 evaluates to true and statement2 is
executed only if testcondition1 evaluates to false. The multiline approach is often easier
to read and provides for additional options.

if testcondition1 then
 statements in here are executed if testcondition1 is true
Elseif testcondition2 then
 statements in here are executed if testcondition2 is true
 and testcondition1 was false when evaluated
Else
 these statements are only executed if all previous test conditions were false
End if

45

The testconditions listed in the above examples are expressions that evaluate to yield a
Boolean (true or false) as discuss in the previous section. They can be simple or very
complicated as the case requires. If statements can be nested to whatever level your
creativity or computer memory allow. Although only one ElseIf statement is shown in
the above example, you can have as many ElseIf sections as desired. It is important to
keep in mind that once any of the test condition has evaluated to be true, the
corresponding code is executed and the If statement exits to the line following the End
If.

2.4.2. The Select Case Statement

A high level conditional is also provided by the Select Case statement, which is valuable
in providing a highly readable but somewhat slower version of the multiline If statement
examined above.

Select Case testexpression
Case testvalue1
statements in here are evaluated if testvalue1=testexpression is true
Case testvalue2
statements in here are evaluated if testvalue2=testexpression is true
Case testvalue3, testvalue4, testvalue5
statements in here are evaluated if any equal the testexpression
Case first_value To second_value
statements in here are evaluated if testexpression is in the range specified
Case is testvalue2
statements in here are evaluated if testvalue2 has an inequality
relative to testexpression that is true (i.e. <, <=, >, >= as specified)
Else
statements in here are evaluated if none of the above tests were true
End Select

The advantage of the Select Case statement is readability and convenience. Some
programmers avoid it because it is a high level construct that slows down program
execution. But the compiler does as much optimization of the conditionals as is
possible, and one should not avoid this statement if it makes the code easier to read.
There are instances when the Select Case statement makes code significantly easier to
follow and requires fewer statements.

46

2.5. Looping

Virtually all programs have sections of code that are repeated multiple times. Scriptor
provides three types of loops, using the combinations: For…Next, Do…Loop and
While…Wend. The most useful of these options is the For…Next loop.

For i = istart to iend step idelta
 if testcondition then exit
Next

The above loop uses a loop variable i which starts out with a value of istart and at each
next statement is increased by a value idelta. The loop is repeated if the loop variable i,
after being incremented, is less than or equal to iend. Thus the Next statement does two
jobs. First it increments the loop variable by idelta. Then it checks to see if the variable
is less than or equal to iend. If so, it loops back to the top and the loop contents are
executed again.

The loop can contain a conditional statement that tests for some condition and if the
condition is true, exits the loop. Loops and conditionals are the heart of programming
and combine to provide enormous flexibility and power. An exit statement inside a loop
exits the current loop only. So if an inner loop
encounters an exit statement, the statement directly
following the last statement in the loop is executed.
The code segment at right illustrates the process. The
value of k when printed out is 100.

You may have noted that the example program that we
are studying and the snippet of code at right includes
lines that delineate the program structure. These
program graphs can be generated by the user by
selecting one of the three options at the bottom of the edit menu. These graphs are
particularly useful when analyzing a program with complex structure. It is a resource
that should be used regularly during the learning process.

The loops shown above count up. But you can also count down as shown in the
following example.

For i = istart downto iend step idelta
 if testcondition then exit
Next

If you want to decrement, you must use the downto statement. The step idelta is
optional and if the step parameter is not present, an increment of +1 (or –1 with downto)

47

is assumed. The For..Next loop can also operate on floating point numbers where rdelta
can be any positive real number. The if testcondition then exit statement is available in
all of the Scriptor loops, and can be used to exit the loop whenever the testcondition
evaluates as true.

For r = rstart to rend step rdelta
Next

For r = rstart downto rend step rdelta
Next

The following loop types are more useful in situations where a test is to be carried out
during the looping process and when the test condition has been satisfied, the loop is
excited. When using the do loop, you have the option of testing before, during or after
the loop has been executed:

Do Until testcondition
Loop

Do
Loop Until testcondition

Do
 if testcondition then exit
Loop

Do Until testcondition1
 if testcondition2 then exit
Loop Until testcondition3

The above examples represent the most common usage, but it is valid and sometimes
necessary to include conditional tests before, during and after the loop is executed as
shown in the fourth example. Each testcondition can be different. The While…Wend
statement provides an addition looping option that provides no additional flexibility but
has the modest advantage of providing a more natural resonance with the English
language.

While testcondition
Wend

While testcondition1
 if testcondition2 then exit
Wend

48

Here, the test condition is only available at the beginning of the loop but one does have
the option of exiting at any point in the loop based on the conditional exit statement, as
shown in the second example.

2.6. Input and Output

A program is of little use if you cant enter data and get the results back in a permanent
form. Scriptor provides a significant number of statements that handle I/O and the
following short list provides a minimal overview.

Clear_Text_Output(ioption) Clears all of the text in 0(both), 1(Main Panel), 2(Text

Panel)
Input(Prompt as string) as string Retrieves input from the user with an optional

prompt
Print(s0) Sends string s0 to both the Main and Text panel output windows. If running

in the Music Panel, this statement also sends output to the Music Output text
buffer.

Format(number, string_format) as string Formats number using rules discussed below
Format(number, n, m) as string Formats number into n digits with m to the right of the

decimal point. Uses exponential format if the number if too large.
Show_progress_bar(ip) Displays the progress bar for ip=0(start) to ip=100(finished).
Show_progress_line(s0 [, fontname, fontsize]) Displays the string s0 in the input line

using the default fontname and fontsize, but the user can override the defaults by
explicitly specifying both the fontname and fontsize.

String_speak(Text, Qnow) Speaks the Text and if Qnow is true, immediately
interrupts.

Convert_to_string(any_variable) as string Converts single, double, integer, boolean,
or colors into their full resolution string representation for printing.

There are also a number of statements that graph data which are discussed later.

2.6.1. The Spreadsheet

One of the most useful components of the Scriptor TIDE is the spreadsheet, which is
available by selecting the Data tab. Entering data into the spreadsheet can be done by
hand, by importing an Excel spreadsheet in comma or tab delimited format, or under
program control. All information in the spreadsheet is in the form of strings. If a cell
contains a number, it is the string representation of that number, not the actual number.

The process of entering data by hand is done on a cell-by-cell basis. Select the cell you
wish to modify and it will change to an editfield into which the new datum can be

49

entered. It is common for the spreadsheet to have cells showing that are outside the
active space. If you click on those cells, no editfield will appear. You can enlarge the
spreadsheet using the buttons at the bottom.

Creating a new spreadsheet is done under program control. For example, the following
program creates a new spreadsheet with 20 rows and 10 columns with numbered
headers.

dim hdrs(-1) as string
dim icw(-1), nrows, ncols as integer
nrows=20
ncols=10
redim icw(ncols)
redim hdrs(ncols)
for i=1 to 10
 icw(i)=80
 hdrs(i)=str(i)
next
spreadsheet_create(20, 10, hdrs(), icw(), 2)

The advantage of using a spreadsheet to handle data is the ease of viewing and
manipulation of the data. The data panel provides a true scientific spreadsheet, so it is
not possible to sort the data “improperly” so that rows are accidentally excluded from
the sort, a problem that is often encountered during a limited sort within Excel. You can
manipulate the data in any fashion that is desired using a program, however.

Program access to the spreadsheet is handled by using the spreadsheet_cell(irow, jcol)
function which sets or returns the contents of the cell. For example, you can fill each
cell with its row and column designation by using the following code:

for i=1 to nrows
 for j=1 to ncols
 spreadsheet_cell(i, j)=str(i)+", "+str(j)
 next
next

The spreadsheet creation and fill programs can be found in the book_samples folder as
sample_program_2_6.txt. It is important to restate that each cell contains a string. The
size of the string is limited only by memory. If the string does not fit, Scriptor will try
to compress the string to make it visible. However, after a certain point, compression
fails and the left-hand side is shown followed by an ellipsis ().

The contents of the spreadsheet can be saved to a file either from the data set panel
(save button) or under program control using save_spreadsheet(file_name).

50

Alternatively, a data set can be loaded into the spreadsheet from the data set panel (open
button) or under program control using open_user_data_file(ifile_number,
filename). The syntax for these statements can be found in Appendix 1.

One source of confusion when using the spreadsheet is the size of a number that can be
stored in an individual cell. Users often worry that a 16-digit number cannot possible fit
into a cell without making the cell very wide. The visualization of the spreadsheet
within the data set panel is separate from the data, which is stored in a two-dimensional
string array that can handle strings of any size constrained only by the memory
available. The maximum number of columns is 64. The maximum number of rows is
limited only by memory, but it is recommended that this number be kept below 68, 000
to provide adequate responsivity of the data set panel vertical scroll bar. But values as
large as 1, 000, 000 have been used to handle data collected from long-term
experiments.

2.6.2. Formatting Output

We close this section by provide additional information on formatting numbers. The
Print() statement works on strings, and hence one must convert numerical values to
strings prior to printing. There are a number of formatting statements and the three most
useful for individual numbers are illustrated below. The const_pi number is the value of
pi to 16 significant digits. The other number, bignum= 1.2345E300, is a number with a
large exponent that requires the use of exponential format.

Formatting statement Print() Result
str(const_pi) 3.141593
convert_to_string(const_pi) 3.141592653589793
format(const_pi, "+0.0000000E") +3.1415927E+0
format(const_pi, "-0.0000000") 3.1415927
format(const_pi, 12, 8) 3.14159265
SF1(const_pi) 3.141 592 653 589 793

str(bignum) 1.234500e+300
convert_to_string(bignum) 1.234500000000000E+300
format(bignum, "+0.0000000E") +1.2345000E+300
format(bignum, "-0.0000000") ?.0000000
format(bignum, 12, 8) 1.23450E+300
SF1(bignum) 1.234 500 000 000 000 e+300

The easiest number-to-string converter is str(a), but it only reports seven significant
digits. In many cases, seven significant digits are sufficient, and the str() function is a
good choice. If the exponent is large, str() automatically adjusts the format to maintain
6-7 significant digits. The convert_to_string function is the most comprehensive. It can
take a number, color or Boolean value and convert it into a full-precision string for

51

printing. But by providing full precision, it often provides too many significant digits.
The Format statement is the best choice in most cases. This function either takes a
formatting string or uses the second and third parameters to set the total number of digits
and the number of digits to the right of the decimal point. The advantage of the second
formatting statement is that it automatically adjusts if it receives a number that is too
large to handle. Note that the string-based formatting statement displays a ? when it
encounters a number too large to display.

Finally, function SF1(a1 as double) as string returns a scientific number format
adopted by the American Physical Society for the display of numbers with a large
number of significant digits. The number is divided up into groups of three with spaces
inserted to make the number more easily deciphered. A full 15 significant digits are
displayed.

More details regarding the various formatting statements can be found in Appendix 1.

2.7. Methods (Functions and Subroutines)

Much of the power of MathScriptor derives from the over 500 functions and subroutines
that have been added to the basic language to extend its capabilities. These functions
are listed in Appendix 1, and provide functions for numerical integration, least-squares
fitting, Fourier and wavelet transformations, linear algebra, singular-valued
decomposition and graphing. The purpose of this section is to describe how the user can
write functions and subroutines to extend capabilities.

Functions are designed to return a value, most often a single value. The structure of a
function is shown below:

Function name(parameter list) As Type
… … …
Return value
End Function

A function must return a value (using the Return statement), and when referenced in
your program, the returned value must be assigned to the appropriate variable. You can
have multiple return statements, but once a return statement is encountered, the function
exits and returns the value. In contrast, a subroutine returns its results by using one or
more of the variables that are passed in the parameter list.

Sub name(parameter list)
… … …

52

End Sub

A subroutine can also have a return statement, but this statement only serves to exit the
subroutine. The statement cannot have a value following it. The parameter list allows
two types of variables to be passed: ByVal or ByRef. If passed by value (ByVal), the
value of the variable is copied into the local variable. If the value of the variable is
modified inside the subroutine, the calling variable remains unaltered. In contrast, if a
variable is passed by reference (ByRef), the memory location is passed and upon exit, if
a change in the value has occurred within the function or subroutine, the change is
retained by the variable upon exit. All parameters default to ByVal except for arrays,
which are always passed ByRef. Accordingly, you normally only need to indicate
ByRef as in the following example:

Sub sub_name(aa as double, ByRef bb as double, ic as integer, a2(,) as double)

In this example, the variables bb and the two dimensional array a2(,) are passed ByRef
while the variables aa and ic are passed ByVal. Again, it is important to remember that
arrays are always passed ByRef so if you change an array element within the subroutine,
that change will be preserved upon exit. If you want to pass an array Byval, you must
do so programmatically by making a copy and placing the copy in the parameter list.

A function can return an entire array if desired. For example, the following is an
example of a function that generates an identity matrix.

Function matidn2(nsize as integer) as double(,)
 dim i, j as integer
 dim a2(1, 1) as double
 redim a2(nsize, nsize)
 for i=0 to nsize
 for j=0 to nsize
 a2(i, j)=0.0
 next
 a2(i, i)=1.0
 next
 return a2() // note a2() is used, not a2(,)
end function

Following is a short section of code that calls this function and demonstrates two
important aspects of calling functions which return arrays. First, not only are the array
elements returned, including the (0, 0;0, 1;1, 0 elements even if not assigned), but the
array is redimensioned to correspond to the dimension that is assigned within the
function. Second, the dimension of the array is not reflected in the return statement
(above) or the assignment statement in line 4 below.

53

dim a(10, 10) as double
dim n, n1 as integer
n1=4
a()=matidn2(n1) // note a() is used, not a(,)
n=ubound(a(), 1)
set_text_style("Courier", 12, rgb(0, 0, 0), false, false)
print(matrix_print(a(), n, n, n))

2.7.1. The Assigns Keyword

There are times when one might prefer to have one of the parameters presented to a
subroutine via the equals sign. For example:

pixel_blend(ix, iy)=blend_color

where ix, iy and blend_color are the three parameters. This can be implemented using
the assigns keyword as shown below.

sub pixel_blend(kx as integer, ky as integer, assigns c0 as color)
 // reads the color of buffer pixel
 // at kx, ky and blends the color c0
 // into that pixel by averaging the RGB values
 dim ir, ig, ib, jr, jg, jb as integer
 dim c1 as color
 c1=buffer_pixel(kx, ky)
 ir = (c0.red+c1.red)/2
 ig = (c0.green+c1.green)/2
 ib = (c0.blue+c1.blue)/2
 buffer_pixel(kx, ky)=rgb(ir, ig, ib)
end sub

Students using this statement for the first time have a tendency to leave out the
parameter which will hold the assignment, and writing something like this…
sub pixel_blend(kx as integer, ky as integer, assigns as color)

The compiler rejects this statement but does not help very much by returning the error
statement “Syntax does not make sense” rather than a more relevant “You must include
a variable after the keyword assigns”. Unfortunately, compilers are not always good at
explaining what needs to be done to fix faulty code. To more fully understand the
example, think about why a variable needs to be included. The code must reflect where
to put the assignment, and without a variable following the assigns keyword, there is no
place to put the value.

54

2.7.2. Method Overloading

Scriptor allows functions and subroutines to be overloaded, which allows two or more
methods to be defined with the same name but with different numbers or types of
parameters. This capability provides significant flexibility in programming. The
flexibility is demonstrated in the following example of a function max1, which can be
called with two or three doubles or two string variable representations of numbers.

function max1(a as double, b as double) as double
 return max(a, b)
end function

function max1(s1 as string, s2 as string) as double
 return max(value(s1), value(s2))
end function

function max1(a as double, b as double, c as double) as double
return max(a, max(b, c))
end function

The above three functions do not fully explore the capabilities of method overloading.
For example, one can have a version of max1 that returns a string representing the
maximum value. The question that students often ask is how all of this is possible. The
common assumption is that a decision is made at run-time with regard to which method
is to be called, but in fact it is the compiler that determines which function is coupled to
the call. And the compiler must find an unambiguous choice. If the compiler cannot
make a selection, it will return Error 24:

 24 Ambiguous call to overloaded method. Method overloading must be defined so that there

is no ambiguity in selecting which method to call. If the number of parameters is the
same, the data types must be different.

55

2.8. Arbitrary Precision Arithmetic

MathScriptor versions 1.8.2 and above include the capability of doing arbitrary precision
(Arprec) arithmetic as well as string based complex arithmetic. The precision of Arprec
arithmetic is controlled by the command Arprec_set_precision(idigits), where idigits is
equal to the number of digits of precision in the real number, not including those digits
in the exponent. An added benefit of using Arprec arithmetic is that exponents as large
as ±58, 000, 000 are allowed.

Arbitrary precision functions have string parameters and return strings. These functions
also work on complex numbers identified by separating the real and imaginary parts
with a comma (do not include I, it is understood). The following functions are Arprec
savvy: plus(s1, s2), minus(s1, s2), mult(s1, s2), div(s1, s2), real(s1), imag(s1), pow(s1,
s2), log(s1), loggamma(s1), exp(s1), abs(s1), sin(s1), asin(s1), cos(s1), acos(s1), tan(s1),
atan(s1), sinh(s1), asinh(s1), cosh(s1), acosh(s1), tanh(s1), atanh(s1).

Output precision can be rounded to a lower precision by using the function
round_to_precision(s1, ndigits). This function returns a string which can be inserted
directly into a Print statement. Alternatively, one can format Arprec strings by using
the function Format(s1, nwidth, ndecimal), which also works on complex numbers
where the total width of the output string equals 2*nwidth+3 for comma delimiter.

There are three comparison functions that can be used with Arprec strings. The first is
the standard equals (“=”) which when used in a conditional statement returns true if two
Arprec strings are identical. This function, when combined with the round_to_precision
function, allows identity to be established at lower precision if necessary. The two
Arprec specific functions, Q_greater_than(s1, s2) and Q_less_than(s1, s2), return true
if s1 is greater than, or less than, s2. These two functions will even work if s1 and s2
were calculated at different precision.

The flexibility and power provided by arbitrary precision arithmetic comes with a price.
The most significant cost is in CPU time as a 32 digit Arprec multiplication takes 4550
times longer than a 16 digit precision double multiplication. The reason for this
significant difference is that double precision arithmetic can take advantage of floating
point hardware that is designed to manipulate double precision numbers. In contrast, all
of the Arprec math must be done in software and despite use of extensive use of
processor floating point arithmetic, Arprec math invariably requires thousands of
processor cycles. Additional latency is associated with the use of strings to receive and
return the results.

Despite the increased computation time associated with Arprec math, there are times
when high precision arithmetic is needed. Salient examples include situations where

56

the relatively small IEEE exponent range of ±308 is inadequate for a given calculation.
This limitation is often a problem in physics, chemistry and engineering calculations.
Overflow or underflow problems are eliminated by switching to Arprec arithmetic.
Cryptography, numerical integration, perturbation theory and Monte-Carlo methods also
benefit significantly from expanded precision. It is also useful to do a sample
calculation using arbitrary precision arithmetic to verify that truncation error is not a
problem, and then revert to double precision after verifying that it is adequate.

2.8.1. Arprec Complex Arithmetic

Arprec complex variables are string variables that separate the real and imaginary
components of a number using a comma. Thus, the complex number 3 + 2i will be
represented as a string “3, 2”. The resulting variable can be used in any Arprec function
as all such functions are designed to recognize a complex number simply by the
presence of a comma. Thus, sin(3 + 2i) = sin(“3, 2”) ≈ “0.531 , -3.59” or 0.531 - 3.59i.
In section 5.3 we explore adding double precision complex arithmetic by using classes,
which do not provide the same level of precision available via Arprec, but are
significantly faster since all the math is done using the floating point units within the
computer processor.

2.9. Modules and Classes

Modules provide a straightforward and flexible approach to providing a set of functions
and subroutines that are available to other objects outside of the module, but can
communicate between each other via private properties and private methods, if desired.
Modules are defined using the following syntax:

module module_name

public and private properties are declared here with the requirement that
each variable is declared using a single line dimension statement.
Each private property is shared by all the methods within the module, but
is invisible outside of the module. Public properties are available to all the code in your
application. Examples include:

private dim u(10, 10) as double // only available to code inside the module
private dim v(10, 10) as double // only available to code inside the module
public dim w(10) as double // available to all code
dim pwr(10) as integer // available to all code (default is public)

57

methods are defined next and are available outside of the module unless their name is
preceded with the word private. Thus

private sub a1(i as integer, byref x1() as double)
// this subroutine is available to only code within the module
// any properties declared are local to the subroutine
….
end sub

public sub a2(i as integer, byref x2() as double)
// this subroutine is available to all code
// any properties declared are local to the subroutine
….
end sub

function a3(i as integer, byref x3() as double) as double
// this function is available to all code (default is public)
// any properties declared are local to the function
….
end function

You cannot have code outside of functions or subroutines within a module. Modules
are never called by themselves but only serve as containers for properties and methods.

end module

The fact that the compiler requires that each variable be assigned in a separate (one-line)
dimension statement is an inconvenience, but is a restriction that can be justified based
on the significant amount of work that is required of the compiler when handling public
and private variables within both modules and classes (see below). But help is
available. You can collect all of your dimension statements into groups as normal and
then press the clean code menu item, and the dimension statements will be expanded
automatically. This saves time during the writing of your programs.

2.9.1. Classes

Classes are collections of methods that are available to objects outside of the class, but
which must be "called" by using a different syntax than is used to call methods declared
via modules. To use classes properly you need to learn three new programming terms,
instantiation, constructors and destructors. Classes are fundamentally different than any
other object, and uniquely powerful. These objects will be discussed in detail in
Chapter 5, and the following overview provides a brief introduction.

58

Instantiation refers to the process of creating a “copy” of the class for use in your
program. A variable is created to represent your class using a standard dimension
statement. Lets say your class is called class1. To use this class, you would assign a
variable to be of type class1 by using the statement dim variable_name as class1. Then
a copy of the class is created by using the statement variable_name = new class1. This
process is known as instantiation. Classes also need constructors.

Constructors. One or more subroutines must be added to the class with the name
constructor. If two or more are present, they must have different types or numbers of
parameters. Multiple methods with the same name but different parameters are called
“overloaded”. These methods are run when the class is instantiated. The process of
instantiation uses the new keyword (a keyword that is sometimes called a constructor) to
create a new “instance” of the class within your program. You should think of an
“instance” as a copy but with properties defined by the constructor. Once created (or
instantiated) you have access to the methods that have been defined by your class. The
constructor is a critical part of instantiation because of the flexibility that it provides.
You can use the constructors to initialize the class to behave differently, or have
different properties. Because the properties that are assigned during instantiation are
part of the class, each instance can define a set of properties that are remembered for the
life of the class. In that way, a class can define a variable, and the methods of
manipulating that variable. This is an advanced capability that will be presented and
discussed in Chapter 6 in the form of an example. We use the term constructors because
you can have more than one method of the same name which is selected based on the
way the new statement is written. You can have multiple constructors and the
constructors can be overloaded (see below). Some classes also need to carry out a
cleanup operation when the program no longer needs them and they go out of scope.
For this reason, classes have an additional but optional subroutine which is called sub
destructor(). This subroutine is automatically called when the class is no longer
available to the program. For example, if a class has been instantiated within a
subroutine, after exiting the subroutine the class has gone out of scope and the class
destructor subroutine is executed if present. The destructor provides the programmer
with an opportunity to do any necessary cleanup operations or redimensioning of
variables that were, for example, increased in size within the constructor. However, the
programmer need not worry about variables that were local to the class. The memory
allocated to these variables is returned to the system automatically.

 Classes are powerful but complicated objects that new programmers should
avoid using until they have mastered modules and the concept of method overloading.
Modules are easier to use because all public methods defined within a module are
immediately available to the program just as if they had been defined within the main
program. The following example illustrates the definition and use of a simple class that
takes a number and multiplies it by π (the default) or a user assigned number. The

59

example also illustrates an important aspect of classes. When they are instantiated
(created by using the new keyword), the variable that you defined to be of type class1 is
“filled” with the code associated with that class. It will not change even if another
variable of type class1 is instantiated but instantiated using a different value for the
internal private variables. The following example illustrates this important, but rather
confusing aspect.

class class1 // creates a class called class1
 dim a1 as double // all variables are private to the class
 dim k as integer // each variable must be declared separately

 public function mba1(x as double) as double
 // public not required because public is the default
 return x*a1
 end function

 sub constructor()
 // constructor uses default initialization of pi
 a1=const_pi
 end sub

 sub constructor(a1set as double)
 // allows user to select other options during new assignment
 a1 = a1set
 end sub

 function a1val() as double
 // this function returns the value of a1
 // although there are no parameters, we need ()
 return a1
 end function

 sub destructor()
 // optional subroutine is executed when class goes out of scope
 end sub

end class

dim r1, a2 as double
dim blim, blam as class1

60

// create an instance of the class using default value of pi
blim = new class1
// create an instance of the class using a value of 4
blam = new class1(4)

r1 = 4.0
a2 = blim.mba1(r1)
print("a2 (based on blim.mba1) = "+str(a2))
print("blim.a1val = "+str(blim.a1val))

r1=4.0
a2 = blam.mba1(r1)
print("a2 (based on blam.mba1) = "+str(a2))
print("blam.a1val = "+str(blam.a1val))

// the following demonstrates that creating an instance of blam
// did not override the definition of blim. Once an instance is
// created, it remains invariant to new instances and constructors.
r1 = 4.0
a2 = blim.mba1(r1)
print("a2 (based on blim.mba1) = "+str(a2))
print("blim.a1val = "+str(blim.a1val))

// end program

The above program, when run, will generate the following output:

a2 (based on blim.mba1) = 12.56637
blim.a1val = 3.141593
a2 (based on blam.mba1) = 16
blam.a1val = 4
a2 (based on blim.mba1) = 12.56637
blim.a1val = 3.141593

Note that when you want to call a class method, you need to access that method by
using the syntax: class_variable.class_method where the class_variable is the variable
that was declared (instantiated) to represent the class in your program and the
class_method is the name of the method that resides within the class. If this seems like
a lot of work without any obvious advantage, it is important to understand that a class

61

provides some new flexibility. The flexibility is that when a class is instantiated, it can
be instantiated with various assignments made at the time of instantiation. You can
thus have many different variables representing the same class, but which have
functions that are altered at the time of assignment to suit your needs. The above is a
trivial example, designed to illustrate the concepts, but not the power, of this flexibility.
The class instantiation and construction syntax may appear to be arbitrarily complicated,
but once you get used to the syntax and explore the possibilities, you will appreciate the
new flexibility the class structure provides.

62

Chapter 3
Graphics

There are 127 graphics commands in Scriptor ranging from bit-level to complex
commands that control fully the writing of both objects and text in color. There are
commands which are relevant to graphics artists seeking to create something beautiful
and commands relevant to scientists seeking to display information with clarity,
precision and style. This chapter provides an introduction to these commands assuming
the reader is a novice. If one is experienced in using graphics, the initial section of this
chapter still needs to be read to explain how buffers are used to create flicker free, high
resolution graphics. Experienced users can explore the many options by selecting
Graphics under the Help menu and scanning through the statements and the brief
descriptions.

There are individually addressable graphics canvasses available in Main (canvas 1),
Graphics (canvas 2) and Music (canvas 3). This chapter introduces the most efficient
approach to graphics known as buffered graphics. In this approach, the user creates a
graphics buffer and does all manipulations in this buffer, which is invisible to the user.
When finished, the programmer then copies the buffer into the canvas using a single
statement. The latter operation has been designed to be very fast, and thus provides for
flicker-free (or nearly flick-free) graphics. Furthermore, when graphics are created in a
buffer, the buffer resolution can be many times greater than the canvas. By using the
buffer_copy_to_canvas command, the user can automatically display the graphics at
maximal resolution allowed by the canvas with full anti-aliasing. This makes the
graphics look professional. Furthermore, the user can save the graphics buffer into a file
that can be of any standard graphics type (Photoshop, jpeg, pict, tiff, bmp, etc.). Using
an intermediate buffer is the only way to create high level graphics that are optimized
for all platforms.

The term anti-aliasing, when applied to computer graphics, refers to the process of
taking a high resolution image and transferring it to a lower resolution image while
eliminating artifacts. The algorithms for this process have been optimized to such an
extent that an image invariably looks better if it is produced by anti-aliasing a high-
resolution image than if graphics are written directly.

63

3.1.1. Buffers

The first step in writing graphics is to create the graphics buffer using the statement:

buffer_create(ioption, pixel_width, pixel_height)

which creates a single buffer of size pixel_width by pixel_height with either a white
background (ioption=0) or a colored background (ioption=1). If a colored background
is selected, the color is assigned by using the buffer_background_color variable. For
example, if you want a dark blue background, execute

buffer_background_color = rgb(0, 0, 100) // Execute this before buffer_create()

where rgb is one of three color intrinsics (see below). The user should create a buffer
that is big enough to provide adequate resolution, while keeping in mind that the larger
the buffer, the slower the graphics manipulations. (In general, the time necessary to
write a scaled graphics object into the buffer is proportional to the square of the pixel
dimensions of the buffer.) The second issue to consider is the aspect ratio, which equals
the pixel_width divided by the pixel_height. Thus, a buffer of 1024x768 provides an
aspect ratio of 1.3333. This value is a typical computer screen aspect ratio, but not
necessarily the best choice. If one seeks to save the graphics for use as a figure to be
inserted into a document, one should choose a higher resolution and an aspect ratio
appropriate for the graphics that will be created. As a starting point, a good choice is
3000 by 2500.

After filling the buffer using the statements introduced below, the final step in the
process is to transfer the buffer to one of more of the canvases available.

buffer_copy_to_canvas(icanvas, [ioption])

where icanvas specifies the canvas [1(main canvas), 2(graphics canvas), 3(music
canvas)] and ioption defines how the buffer is written. If ioption =0 , the graphics are
centered are preserve the aspect ratio, if ioption=1, the graphics are drawn starting in the
upper left, but with preservation of the aspect ratio. If ioption=2, the canvas is filled
with the buffer, and the aspect ratio is ignored.

64

3.1.2. Specifying the color

The human eye can distinguish light over ten log units of intensity, and at the focal point
of the retina, distinguish color differences with a resolution of 1 part in a few million.
Color plays a very important roll in how we perceive our environment, and thus we seek
to control both the intensity and color of graphics objects with precision. We control the
color by using what are known as color intrinsics, functions that allow the user to
specify a color based on additive or subtractive space or in terms of a color wheel that
helps constrain the colors to constant brightness and/or saturation.

Modern computer screens can manipulate the color of individual pixels to levels of a
few parts per million although LCD displays, particularly on notebook computers, often
use anti-aliasing to save display memory and in the process reduce the color space to
one part in a few thousand. Fortunately, we do not need to worry about the internal
workings of the computer display system, and can write graphics routines which will
work on any computer which will run Scriptor. Colors are assigned by using one of
following color intrinsics.

rgb(ired, igreen, iblue) as color, where ired, igreen, iblue are integers that range from 0
to 255. Black is rgb(0, 0, 0) and pure white is rgb(255, 255, 255). Most programmers
find that RGB space is the easiest to use because it is intuitive. Although the integers
are limited to a single byte range, the RGB function provides access to 255^3 = 16
million colors. Few humans can distinguish colors at this level of precision. The RGB
representation has another form that is more compact, and once mastered, is preferred.

&cRRGGBB as color, where RR, GG and BB are the hexadecimal representations of
ired, igreen and iblue values from the rgb(ired, igreen, iblue) method. Experienced
users prefer to use this compact description, because it is faster to type in and they have
gained enough experience working with hexadecimal numbers to be efficient.
Hexadecimal numbers are base 16 and hence a byte (8 bits) of data can be represented
conveniently as a two digit hexadecimal number ranging from 0 [hex(0)=0] to 255
[hex(255)=FF]. Table 3.1 is provided to help those unfamiliar with hexadecimal
numbers to quickly convert for single byte integers. For example, white is &c000000,
black is &cFFFFFF and the RGB color value rgb(100, 150, 200) is &c6496C8. There is
an internal function, hex(i) as string, which will convert an integer to its hexadecimal
equivalent.

cmy(cyan, magenta, yellow) as color, where cyan, magenta, yellow are floating point
numbers from 0.0 to 1.0. While RGB colors are additive, CMY colors are subtractive.
Those familiar with color printers will recognize that color print is created by using
three color inks that are subtractive, removing white by overlaying transparent ink (or
toner) that is cyan, magenta or yellow. Most printers also have a fourth ink that is black

65

to provide a more cost effective black and white printing and to improve contrast ratio in
color prints.

hsv(hue, saturation, value) as color where hue, saturation and value are floating point
numbers from 0 to 1.0. The values of hue from zero to one span the range from
red(0.0)-orange(0.125)-yellow(0.17)-green(0.33)-aqua(0.5)-blue(0.66)-purple(0.8)-
red(1.0). The saturation adjusts the amount of color versus gray scale with 1.0
providing full color. The value adjusts the brightness and goes from 0.0 (black) to 1.0
(brightest). Although this function is the hardest to use to create specific colors, it is the
easiest to use to create a series of colors that have the same level of saturation and/or
brightness. This capability is very helpful when generating a series of colors for plot
lines that have different, easily differentiated colors.

A color, as defined by any of the above three intrinsics, can be assigned to a variable, a
pixel or a graphics object. One can also read the color of an object by using the
function:

color_value(color, s0) as double, where color is a variable containing the color and s0
is a string representing the component sought (“red”, “green”, “blue” or “hue”,
“saturation”, “value” or “cyan”, “magenta”, “yellow”). To make programming easier,
these components can be designated by using only the first letters (e.g. h, s, v, r, g, b, c,
m, y). It is important to remember that the complete description of a color requires
three components of a given specification: {r, g, b} or {c, m, y} or {h, s, v}.

color extensions: An alternative to using color_value is to use the extensions .red,
.green, .blue to read the RGB values, .hue, .saturation, .value to read the HSV values or
.cyan, .magenta, .yellow to read the CMY values. These extensions can also be used to set
the values (e.g. clr.red = 200 or clr.hue = 0.7).

color_selection_window(color, text_prompt) as Boolean, can be called inside a
program to allow the user to select a color. This statement provides access to the color
selection window provided by the operating system, and as such, the window is quite
different from Mac to PC, and from Windows XP to Windows 8. The text_prompt is
only displayed with some operating systems, and the user should check to verify it
works and provide an alternative prompt via a print() or show_progress_line()
statement.

66

Table 3.1. Conversion of decimal values (D) to corresponding hexadecimal values (H)
D H D H D H D H D H D H D H D H
0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7
8 8 9 9 10 A 11 B 12 C 13 D 14 E 15 F

16 10 17 11 18 12 19 13 20 14 21 15 22 16 23 17
24 18 25 19 26 1A 27 1B 28 1C 29 1D 30 1E 31 1F
32 20 33 21 34 22 35 23 36 24 37 25 38 26 39 27
40 28 41 29 42 2A 43 2B 44 2C 45 2D 46 2E 47 2F
48 30 49 31 50 32 51 33 52 34 53 35 54 36 55 37
56 38 57 39 58 3A 59 3B 60 3C 61 3D 62 3E 63 3F
64 40 65 41 66 42 67 43 68 44 69 45 70 46 71 47
72 48 73 49 74 4A 75 4B 76 4C 77 4D 78 4E 79 4F
80 50 81 51 82 52 83 53 84 54 85 55 86 56 87 57
88 58 89 59 90 5A 91 5B 92 5C 93 5D 94 5E 95 5F
96 60 97 61 98 62 99 63 100 64 101 65 102 66 103 67

104 68 105 69 106 6A 107 6B 108 6C 109 6D 110 6E 111 6F
112 70 113 71 114 72 115 73 116 74 117 75 118 76 119 77
120 78 121 79 122 7A 123 7B 124 7C 125 7D 126 7E 127 7F
128 80 129 81 130 82 131 83 132 84 133 85 134 86 135 87
136 88 137 89 138 8A 139 8B 140 8C 141 8D 142 8E 143 8F
144 90 145 91 146 92 147 93 148 94 149 95 150 96 151 97
152 98 153 99 154 9A 155 9B 156 9C 157 9D 158 9E 159 9F
160 A0 161 A1 162 A2 163 A3 164 A4 165 A5 166 A6 167 A7
168 A8 169 A9 170 AA 171 AB 172 AC 173 AD 174 AE 175 AF
176 B0 177 B1 178 B2 179 B3 180 B4 181 B5 182 B6 183 B7
184 B8 185 B9 186 BA 187 BB 188 BC 189 BD 190 BE 191 BF
192 C0 193 C1 194 C2 195 C3 196 C4 197 C5 198 C6 199 C7
200 C8 201 C9 202 CA 203 CB 204 CC 205 CD 206 CE 207 CF
208 D0 209 D1 210 D2 211 D3 212 D4 213 D5 214 D6 215 D7
216 D8 217 D9 218 DA 219 DB 220 DC 221 DD 222 DE 223 DF
224 E0 225 E1 226 E2 227 E3 228 E4 229 E5 230 E6 231 E7
232 E8 233 E9 234 EA 235 EB 236 EC 237 ED 238 EE 239 EF
240 F0 241 F1 242 F2 243 F3 244 F4 245 F5 246 F6 247 F7
248 F8 249 F9 250 FA 251 FB 252 FC 253 FD 254 FE 255 FF

67

3.1.3. variables of type color

New programmers are often surprised to discover that a variable can be declared of type
color. For example, one can declare the following variables:

dim darkred, lightred as color
darkred = rgb(80, 0, 0)
lightred = rgb(200, 0, 0)

One can also define color constants, but in order to do so, one must use the hexadecimal
representation described above. Thus, a constant of darkred can be defined as follows:

const darkred = &c500000

Be sure to avoid trying to redefine a constant in your program. Constants are not
supposed to be changed by the user once defined. Any attempt to redefine a constant
will generate error 70 and termination of the program.

3.1.4. bit level graphics

One can control and read the properties of an individual pixel if desired. However, this
is done with reference to the graphics buffer, not one of the three canvases. There is a
good reason for this restriction. The buffer is completely under the programmer’s
control, whereas a canvas is shared with Scriptor and the operating system. Although
you can indeed write to the canvas, this process is mediated by Scriptor based in part on
the operating system and the graphics cards that are installed in the computer. Scriptor
optimizes the display in the three graphics canvases by doing anti-aliasing and
buffering, which is operating system dependent. Graphics on a Macintosh computer are
handled differently from graphics on a Windows PC. In contrast, the buffer is yours to
handle as you see fit.

There are two statements available for setting or reading the color of a buffer pixel
(assume acolor has been declared of type color).

buffer_pixel(ix, iy) = acolor
acolor = buffer_pixel(ix, iy)

where ix, iy are the pixel positions inside the buffer. These statements are 1-based
which means the upper left pixel is buffer_pixel(1, 1) and the lower right pixel is
buffer_pixel(nx, ny). Thus, pixels are numbered in a raster format which is identical to
the way elements in an array are defined. This approach makes inherent sense until it is
extended into writing graphics objects, at which point the user must confront the fact

68

that the Y axis appears to be inverted (Y values increase as you move south on the
canvas). Always remember that 1, 1 is at upper left.

Lets examine a simple program that creates a very small buffer and writes into the
pixels:

A copy of the graphics output from the above program is shown if Fig. 3.1.

Figure 3.1. The output from the above
program is shown at right. The
background color is assigned to the color
constant darkred. Individual randomly
colored pixels are written into a smaller
6x6 pixel square inside the 10x10 pixel
buffer. The small buffer is then expanded
into the canvas by using the
buffer_copy_to_canvas statement which
means each pixel is expanded into a
space of about 12x12 pixels. The
expansion is blurred in the process of anti-
aliasing.

The ability to read the color of a buffer
pixel may appear to be pointless given
the fact that the programmer was likely responsible for writing it. However, it is
possible to load an external graphics object into the buffer and then read the color of
each of the bits by using the buffer_pixel(i, j) statement. Reading a large buffer pixel-
by-pixel is possible, but it is slow and inefficient. When the entire buffer is to be
examined or manipulated at the pixel level, there are statements that can read the entire
buffer into arrays. One example is the following:

69

buffer_to_arrays((ired(), igreen(), iblue())

The red channel is stored into ired(1..buffer_width, 1..buffer_height), the green into
igreen(1..buffer_width, 1..buffer_height) and the blue into iblue(1..buffer_width,
1..buffer_height). The three arrays are redimensioned to the size of the buffer. One can
then manipulate these arrays and load them back into the buffer using:

buffer_fill_from_arrays(ired(), igreen(), iblue()).

We will explore the use of these, and other similar statements, in more detail below.

3.2. Drawing Objects

Before we draw any objects, we need to assign a color and a linewidth to use for the
drawing. These two requirements are handled by using the following two statements:

graphics_forecolor(desired_color)

where color is replaced by a variable of type color or a color intrinsic (e.g. rgb()). The
default graphics_forecolor is black. Similarly, we assign the stroke width by using:

graphics_stroke_width(npixels)

where npixels is the stroke width in pixels. The default stroke_width is 1.0 At any time
during and/or after the graphics manipulations, the buffer can be written by using the
statement:

buffer_copy_to_canvas(icanvas, [ioption])

where icanvas specifies the canvas [1(main canvas), 2(graphics canvas), 3(music
canvas)] and ioption defines how the buffer is written. If ioption =0 , the graphics are
centered are preserve the aspect ratio, if ioption=1, the graphics are drawn starting in the
upper left, but with preservation of the aspect ratio. If ioption=2, the canvas is filled by
the buffer, and the aspect ratio is ignored.

70

3.2.1. Lines and Fills

Lines are the simplest of all the objects that can be drawn, but in combination, have the
potential to draw any complex object. All objects are drawn to the buffer, or to buffer 1
is multiple buffers have been created. One can draw lines of any color or thickness by
using the following statement:

draw_line(ix1, iy1, ix2, iy2)

which draws a line from ix1, iy1 to ix2, iy2. The thickness of the line defaults to 1
pixel, but can be set to any number of pixels by using graphics_stroke_width. The
color of this line is assigned by using graphics_forecolor. If there is a complex object
involving a series of lines connected to each other, a more powerful statement is
available:

draw_arrays(ix(), iy(), n1, n2)

which draws a series of connected lines with vertices at ix(n1..n2) and iy(n1..n2). The
power of this statement is more evident when one wishes to draw a complex object that
is filled with a solid color. The following statement will do exactly that:

fill_arrays(ix(), iy(), n1, n2)

which is identical to the draw_arrays statement except the outline of the object is not
drawn, but rather the object is filled with the graphics_forecolor. This is only
successful if the first and last pairs of points are identical: ix(n1)=ix(n2) and
iy(n1)=iy(n2). However, if the first and last points do not coincide, the fill routine
closes the object by drawing a line between the first and last points and then completing
the fill. For example, the following code segment draws
the object shown at right (the grid lines are in increments
of 100 pixels):

 graphics_stroke_width(4)
 graphics_forecolor(rgb(200, 200, 0))
 ix()=array(0, 100, 200, 200, 150)
 iy()=array(0, 100, 100, 200, 220)
 fill_arrays(ix(), iy(), 1, 4)
 graphics_forecolor(rgb(0, 0, 0)
 draw_arrays(ix(), iy(), 1, 4)

71

The above code segment demonstrates a statement that is quite useful when loading a
series of values into an array. This statement is shown below:

array(comma delimited list of any type variable) as variant 1d array

which transfers the comma delimited set of variables into a one-dimensional array of the
appropriate type starting at the 0th element. If you want to start at the array(1) element,
simply insert a zero or null value (0.0, 0 or "") in the first position as shown in the code
example above. The recipient array is dynamically re-dimensioned to be of the exact
size as required to hold the data.

3.3. Predefined Objects

 Although the draw_array() and fill_array() methods provide the programmer with the
flexibility to draw or fill any object, these statements are complicated to use because the
programmer has to specify the vertices of the object. Thus, internal methods are
predefined for squares, rectangles and circles. The commands are summarized below:

3.3.1. Squares and
Rectangles

Squares and rectangles are
drawn using the same
statements:

draw_rect(ix_center, iy_center, iwidth, iheight, [iarcwidth, iarcheight])
fill_rect(ix_center, iy_center, iwidth, iheight, [iarcwidth, iarcheight])

where the center of the object is at ix_center, iy_center, the width of the rectangle is
given by iwidth and the height by iheight. The last two parameters are optional, and if
left out, the rectangle has sharp edges. If included, iarcwidth and iarcheight indicate
where to start the rounded arcs relative to the edges in the x and y axes. The following
four statements draw the rectangles shown in the figure above.

draw_rect(200, 200, 250, 200)
draw_rect(500, 200, 250, 200, 80, 80)
fill_rect(800, 200, 250, 200)
fill_rect(1100, 200, 250, 200, 80, 80)

To draw a square, one sets iwidth = iheight.

72

3.3.2. Circles and Ovals

There are four statements that draw circles and ovals. Circles are defined in terms of
their center and radius:

draw_circle(ix_center, iy_center, radius)
fill_circle(ix_center, iy_center, radius)

whereas ovals are defined in terms of their center and both a width and a height:

draw_oval(ix_center, iy_center, iwidth, iheight)
fill_oval(ix_center, iy_center, iwidth, iheight)

For example, the
following four statements
generate the circles and
ovals shown in the figure
at right.

draw_circle(200, 200, 100)
draw_oval(500, 200, 250, 200)
fill_circle(800, 200, 100)
fill_oval(1100, 200, 250, 200)

3.3.3. The Paintbrush

There is a very powerful command which can carry out a local fill based on the local
pixel environment:

buffer_write_paintbrush(ix, iy, ired, igreen, iblue)

This command reads the
pixel color at position ix,
iy and replaces that pixel
and all contiguous pixels
of the same color with the
new color specified by
ired, igreen and iblue. For example, the following statements, modify the previous
picture as shown above right.

buffer_write_paintbrush(250, 220, 0, 0, 0)
buffer_write_paintbrush(320, 120, 0, 0, 0)
buffer_write_paintbrush(630, 120, 0, 0, 0)

73

The paintbrush is a tool that may appear to be more artistic than pragmatic, and it is true
that clever use of the paintbrush can create complex and unique graphics. However, it is
also a very useful tool for scientific and engineering graphics, particularly when one
seeks to illuminate the overlap of two complex objects or execute a ray tracing
algorithm.

3.4. String Graphics

Prior to writing text into the graphics panel, one of the local fonts must be selected using
the following statement.

graphics_font(font_name, isize, Qitalics, Qbold) as boolean

which sets the buffer graphics font to the string font_name, and simultaneously assigns
the font size using the integer isize. The booleans Qitalics and Qbold set italics and bold
options, respectively. This function returns true if the specified font is found in the font
folder. This function is not smart enough to look for the font in other locations on the
computer, and thus the programmer should either make sure the font is present or
provide a series of statements that test for a number of different fonts until a valid font is
found.

If one is working on a program on the same computer that will be used to run the
program, it is a simply matter to check the font menu. If the font is there, then Scriptor
will be able to find it with the above statement. Make sure the font_name is spelled
identically to the one that appears in the font menu. Alternatively, a font type can be
specified by using one of the following variables to assign the fontname:

System_fontname_sans as string
System_fontname_serif as string
System_fontname_label as string
System_fontname_mono as string
System_fontname_narrow as string

These five strings are assigned when Scriptor is starting up at which time the program
scans the local system font folder, loads all of the viable fonts into the font menu, and
then analyzes them to find fonts that are of the three following forms:

serif fonts. These are fonts which have non-structural detail added at the edges of the
font to make them easier to read or more artistic. The main text of this book is written
using Times, which is one of the more common serif fonts, and very readable when on
the printed page. Other common examples of serif fonts include: Times New Roman

74

(traditional serif), Garamond (old-style serif), Rockwell (slab serif) and Bodoni (modern
serif).

sans or sans-serif fonts. The term sans-serif means “without serif” features and is
derived from the French word sans (without). It is now common to use the term sans
by itself to represent sans-serif. Removing non-structural detail makes a font more
readable on a computer screen, and makes titles and headers stand out. This
paragraph is printed in Arial, a very common version of a sans-serif typeface. Other
common examples of sans-serif fonts include: Helvetica (traditional sans), Royal Gothic
(grotesque or early sans), Gill Sans (humanist sans) and Avant Garde (geometric
sans).

monospace or non-
proportional fonts.
A majority of fonts are
designed to be
proportional. That
means, the horizontal
space for each letter
is determined by the
nature of the letter
itself. This makes the
type more compact and
easier to read. However, if one is preparing a table of numbers
and text, the table is more legible if all the letters and
numbers line up in columns. Non-proportional or monospace fonts
have identical widths for each glyph (letters, symbols and
numbers). This paragraph and the spacing example at upper right
is printed in Courier, the most common monospaced font. The
single character width is 0.6 times the font size. Other common
monospaced fonts and their character width include: Courier New
(0.6, a thinner version of Courier), Andale Mono (0.6), Monaco
(0.6), Letter Gothic (0.6), Prestige Elite (0.6), Osaka (0.5),
OCR A Std (0.72). If a table of numbers is being prepared, it
is worth knowing that many proportional fonts nevertheless have
monospaced numbers. Examples and relative widths of the number
characters include: Arial Black (0.667), Arial Rounded MT Bold
(0.594), Baskerville (0.5), Bookman Old Style (0.62), Century
Schoolbook (0.556), Garamond (0.469), Gill Sans (0.5), Lucida
Grande (0.632), Marker Felt (0.57), and Rockwell (0.542).
However, none of the monospaced number fonts listed in the
previous sentence provide monospaced numerical symbols (e.g. {+,
-.}). In most cases, proportional symbols can be used while
still allowing the digits to line up properly.

75

3.4.1. Drawing strings

A string is drawn to the graphics target by using one of the following three statements:

draw_string(text, ix_center, iy_center)

which draws a single line of text centered at ix_center and iy_center. The color of the
text is that assigned via graphics_forecolor and the text size is that assigned previously
via graphics_font (see above). If a multiline string is to be drawn, ix_center and
iy_center now assign the upper left position of the string. A multiline string is assigned
by the method when it finds one or more endofline characters (=const_eol). The
multiline string will be printed left justified. The above two statements draw text that is
horizontal, but as shown in the example below, text can be rotated to any angle desired.

draw_rotated_string(text, ix_center, iy_center, angle_degrees)

where ix_center and iy_center are the center of the text. If the goal is to rotate the text
about a fixed position, as shown in the figure at right, then one must rotate the ix_center,
iy_center values around a selected position. A program that does exactly that is shown
below and produces the figure at right.

dim ixt, iyt, radius, theta as integer
dim s0 as string
set_graphics_slider(100)
buffer_create(0, 2000, 2000)
radius = 500
if graphics_font(system_fontname_serif, 64, false, true) then
 for theta = 0 to 359 step 9
 graphics_forecolor(hsv(theta/360., 1, 0.5))
 ixt = 1000 + radius*cos(theta*const_degree)
 iyt = 1000 + radius*sin(theta*const_degree)
 s0="----------"+format(theta, 6, 0)+" degrees"
 draw_rotated_string(s0, ixt, iyt, theta)
 buffer_copy_to_canvas(active_canvas, 0)
 next
end if

76

3.4.2. Selecting Cross-Platform Fonts

It is now common for both Windows and Macintosh operating systems to have a large
number of fonts provided by the operating system. Unfortunately, the fonts commonly
found on a Mac differ from those on a Windows machine except for a select few that
seem to be present on most systems, and which are usually included in the font
collection installed on printers. If one is writing cross platform programs, it is a good
idea to select from the following list of common cross-platform fonts:

Arial (character width in pixels for size 12 = 5.825)
Arial Narrow (4.772)
Book Antiqua (5.895)
Bookman Old Style (6.368)
Century (6.202)
Courier (7.132)
Garamond (5.561)
Palatino (5.868)
Tahoma (5.974)
Times New Roman (5.596)
Verdana (6.851)
 Symbol {αβγεφγηψµλ} (5.974)

where the font name is printed in the font (except for symbol) and the number in
parentheses is the average width of the characters in pixels when plotted in a canvas
using a font size of 12. Note that while all of these fonts are the same size (12), they
have a surprisingly different height and width when printed (or plotted). That is why
the average character width is important to know.

An alternative approach to cross-platform font selection is to use the font names
assigned by the system automatically at startup to the five variables shown below:

System_fontname_sans as string
System_fontname_serif as string
System_fontname_label as string
System_fontname_mono as string
System_fontname_narrow as string

That approach more-or-less guarantees that a font will be available of the desired type,
but it does not guarantee that the same fonts will be used at run-time. If there are no
fonts in the system folder of a given type, the system_fontname_option string will be
null.

77

3.5. Graphics using Multiple Buffers

The user can create multiple buffers and in the process prepare complex, encapsulated
figures. This approach is particularly useful when a more complex graphic is made up
of separate components that are more easily prepared separately. The key statement is
the following:

buffer_create_multiple(nbuffers, ioption, iwidth, iheight)

where nbuffers is the number of individual buffers to be created, ioption indicates
whether the buffers would have a white (ioption=0) or colored (ioption=1) background.
The size of each buffer is iwidth by iheight in pixels, and it is critical to keep in mind
that the total work area is given by abs(nbuffers)*iwidth*iheight. Memory allocation
can therefore become an issue if one seeks to create six buffers with a size of 3000 by
2000 pixels, which would require 6*3000*2000*32 = 144 MB. This memory amount
is, by itself, of little consequence but on a computer with 512MB total memory, a
potential deal breaker. The Scriptor program will make every effort to reallocate objects
to handle the additional memory requirement, but if that fails, execution will generate a
run-time error and the following error message:

nil-object error- not enough RAM to create graphics buffer.

For reference, the term nil-object means the system attempted to create an object (in this
case, a large graphics buffer), but when this object was checked for existence, it was not
found (i.e. nil-object). Often the operating system will take such umbrage at the
audacity of asking for more memory than it can provide, it will shut down the
application entirely. Do not despair. If one has checked “open most recent work when
starting up” in the preferences panel, the program will be reloaded when you restart
Scriptor. If not, you can find it in the “backup” folder where each program run is saved
with a label of the form “B”+date+time+truncated_name.txt.

There are eight options for nbuffers, where the absolute value determines the number of
canvases within the buffer and the sign determines the canvas placement:

2 (1 2 --- left right)
-2 (1 above 2 -- up down)

3 (1 2 3 --- left middle right)
-3 (1 above 2 above 3 ---- top middle bottom)

4 (1 2 3 4 --- left to right in line)
-4 (1 2 on top, 3 4 underneath)

6 or -6 (1 2 3 on top 4 5 6 underneath)
9 or -9 (1 2 3 on top 4 5 6 in middle and 7 8 9 on bottom)

78

Explicit locations of the canvases for each of these options are shown in Figure 3.5.1.

Figure 3.5.1. The location of the individual canvases within the larger buffer as a function of
nbuffers and the sign of nbuffers.

When using multiple buffers, one always writes into buffer 1, and then moves or swaps
buffer 1 into one of the other canvases. Each canvas is labeled buffer 1, buffer 2, etc.
Manipulations are carried out by using the following statements:

buffer_copy_to_buffer([isource,]itarget)

where the optional parameter, isource, is the source buffer and itarget is the destination.
Note that the operation is a copy, so that the contents of buffer itarget are overwritten by
the contents of buffer 1 (of buffer isource). These operations all depend on the user

79

having previously created at least itarget canvases. If that is not the case, the operation
is canceled and the following error is printed in

Run Time Error in buffer_copy_to_Buffer: target canvas number exceeds number
of created buffers.

The alternative is to flip two buffers by using the following statement:

buffer_flip_buffers(i, j)

which flips the contents of buffers i and j. This statement does not destroy the contents
of any of the canvases, simply flips those designated by the two integer parameters. If
either value exceeds the number of canvases available, the operation is canceled and the
following error is printed out.

Run Time Error in buffer_flip_buffers: one or more of the targets exceeds number
of created buffers.

Multiple buffers are invaluable for preparing comparative figures for professional
graphics applications. A number of examples are presented below. By allowing the
user to work on a small section at a time, the programming is much easier and the
complicated offsets required to create a large picture are obviated. However, one
always has the option of putting a larger figure together by using Adobe Illustrator,
Adobe Photoshop or a comparable graphics editing program.

3.6. Saving and Loading Graphics Files

After creating an artistic picture or scientific graphic, the next step is usually to save the
buffer (which contains the picture or pictures) for insertion into a document or emailing
to a friend or collaborator. This process is accomplished by moving to the graphics
panel and using the save button. The user is then presented with the option of not only
naming the graphics file and selecting a location for the file, but selecting the type of
graphics file into which the buffer is saved. A brief description of the various graphics
file types is therefore presented below. Remember that the save button is not saving the
graphics canvas that is observed but rather the buffer that the user created to store the
graphics. Normally, the buffer will always be higher resolution than the canvas.

3.6.1. Saving Graphics via the Save Command

Scriptor can save the buffer in various formats. In some cases, the dialogue includes
options that determine the degree of compression. The sophistication of this dialogue is

80

directly dependent upon whether Quicktime has been installed on the users computer.
Because Quicktime is free and is required if one is to make use of the Music panel, the
following discussion assumes the user has already installed the free version. The Pro
version is not required for any of these options. Quicktime is cross-platform and is
available at www.apple.com/quicktime. The various formats are described below:

Photoshop (filename.psd). Adobe Photoshop has become the de facto standard for
image editing, and is used by a majority of graphics professionals as well as students.
The Photoshop format is a potentially loss-less compressed form that is both efficient
and of high quality. One has the option of working with a smaller color space (best
depth to 256 shades), and if the color space is reduced by user selection, one will create
a smaller file with a corresponding loss in color depth.

BMP (filename.bmp). The abbreviation refers to a Bit-Mapped Picture, and is a
common choice for Windows computers. Most applications on a Mac can read this as
well, so this is a good choice and options are available for various color depths from
black and white to millions of colors. The picture can also be saved in greyscale.

JPEG (filename.jpg). The abbreviation JPEG stands for Joint Photographic Experts
Group and is the most common choice for photographs where file size is important.
JPEGs are stored using a clever method of minimizing file space by a variety of
methods that allow the user to select both grey scale or color as well as quality of the
image. One can alternatively assign a file size, and the compression will be carried out
to achieve the goal. The problem with this format is that it introduces artifacts that are
permanent and blotchy. While the best choice for web based pictures where download
time is an issue, jpegs should be avoided if quality is the primary issue. However, there
is one exception. The user can save the picture using jpeg format and “best quality” and
generate a file that is nearly lossless. Journals often request high resolution, best quality
jpeg figures as they represent a good compromise of quality and size.

JPEG2000 (filename.jp2). An updated version of the JPEG format (see above) which
allows for lossless compression and high quality. An excellent choice if the target
application can read this format. The only downside to this choice is the time it takes to
decompress the image, because the wavelet-based image compression requires heavy
computer usage.

PICT (filename.pct). This format was historically used on Macintosh computers, and
is both powerful and flexible. Options include a variety of compression schemes and
quality options. The flexibility of this format is impressive, but if the target computer
does not have Quicktime installed, the ability to read this format should not be assumed.
This format has been deprecated in favor of the pdf format.

81

PDF (filename.pdf). The abbreviation stands for portable document format, and was
developed by Adobe corporation as a general approach to encapsulation of documents
and pictures. In the case of pictures, both vector and pixel graphics are supported, and
LZW compression is available to adjust the size at the expense of resolution.

PNG (filename.png). The abbreviation usually stands for persona non grata, but in the
present case it stands for Portable Network Graphics. Unless someone asks for this
format, don’t use it.

Quicktime (filename.qtif). This format is excellent, but requires that the target
computer have Quicktime installed. This format is not as commonly used as PICT, and
has no intrinsic advantages over PICT. Unless someone requests this format, don’t use
it.

TIFF (filename.tif). The abbreviation stands for Tagged Image File Format and the
format is now owned by Adobe. It is known as a container format because one can store
both bit-mapped and line-art images. Although this format allows for compression, it is
not as flexible as other formats. Furthermore, there are Mac and PC versions of the
TIFF format which often lead to incompatibilities. The advantage of this format is that
it can be lossless, but other lossless image formats are available (e.g. Photoshop and
jpeg2000) and the potential for image corruption due to corrupted tags or format
problems must be considered. Although historically important, other formats are
preferable when bit mapped images are involved.

3.6.2. Saving Graphics via the Picture Conversion Window

Under the file menu is the Open Picture Conversion Window item that opens up a
separate window and automatically loads the buffer image into the window. A picture
of this window is shown in Fig. 3.6.2. This window allows the user to manipulate the
resolution and down-convert the picture to grey scale, if desired. While increasing the
resolution is available, it is preferable to do that type of manipulation in a more
advanced graphics program like Photoshop. When decreasing the resolution is desired,
this program carries out full anti-aliasing and produces results comparable to Photoshop.

The save button at lower right allows the user to save the modified graphics. The
dialogue provides the same selection of options as the save button in the Graphics
Window (see Section 3.6.1.). All of the operations that are done in this window can
also be done using programming, but this window provides immediate feedback and is
more convenient to use when relatively few operations are involved.

82

3.6.3. Opening Graphics via the Picture Conversion Window

The Picture Conversion Window also allows the user to open a graphics file and
subsequently load the picture into the buffer. This same operation can be done from
within a program, and thus the only reason to use the window is if the picture is to be
manipulated. This option is best if a picture needs manipulation with regard to
transparency as the user usually needs to look at the picture to carry out the operation
(and select the color to be made transparent). When the open button is selected, the
open dialogue is directed to the user_pictures folder provided that the scripter program
is run from the folder containing the user_pictures folder.

Figure 3.6.2. The Picture Conversion Window. When opened, this window displays the current buffer and
allows the user to manipulate the buffer in preparation for saving. This window will also open a graphics
file, adjust its color or resolution and copy the picture into buffer 1 (use the Copy to Buffer1 & Exit
button).

83

3.7. Manipulating Pictures

Individual pictures can be loaded into memory and analyzed or manipulated. Although
the actual analysis must take place in the buffer, the user opens the picture into a
previously created picture object created by using the following statement:

picture_create(inum, nwidth, nheight, Qtransparent)

which creates a new picture file in the picture slot ipicture with size nwidth by nheight
If Qtransparent is true, pure white becomes transparent. Pure white is RGB(255, 255,
255) = CMY(0, 0, 0) = HSV(0, 0, 1). (The picture conversion window, available under
the Edit menu, can be used to manipulate the location and amount of transparency for
any given picture.) One can create as many pictures as memory allows, but it is
important that the picture slots be created in numerical order (low to high) to optimize
memory utilization. The following statement can subsequently load a picture from a
disk file into buffer 1 or the picture object designated by idestination.

open_user_picture_file(ifilenumber, filename [, idestination]) as boolean

operates in a fashion identical to the open_user_text_files routine but goes to the
user_pictures file and then loads the picture into the buffer. If multiple buffers have
been created, then the picture is loaded into buffer 1. If the optional parameter
idestination is included, it designates the picture slot into which you want to place the
opened picture. One does not need to create a picture object if the above statement is to
be used to load a picture into the buffer. Although a picture can be designated to have
transparency when the object is first created, the following statement allows the user to
turn transparency on or off:

picture_make_transparent(ipicture)

makes the ith_picture transparent. If the value of ith_picture is negative, the
abs(ith_picture) is made non-transparent, which means that purewhite is now solid.
This function does nothing if the ith_picture has not yet been created. There are two
ways to copy a picture (from the picture set) to the buffer. The fastest method uses a
pixel-to-pixel transfer via the following statement:

picture_copy_to_buffer(ipicture)

which copies picture number ipicture into the buffer on a 1-to-1 pixel ratio starting at the
upper left. The buffer must be large enough to handle this copy or the picture is

84

truncated (pixels too large to fit are lost). However, a more sophisticated copy can be
carried out by using the following statement:
picture_write(isource, targetx, targety [, destwidth, destheight, sourcex, sourcey,
sourcewidth, sourceheight])
draws picture number isource
into the buffer. TargetX and
TargetY are the upper left hand
pixel coordinates. If no other
parameters are included, then the
entire picture is written into the
target at targetx and targety. You
can, if desired, include another
six parameters to designate the
size of the window and the
portion of the picture you want to
draw. Destwidth and destheight
set the size of the window into
which you want to write the
picture. Sourcex, sourcey,
sourcewidth and sourceheight set
the upper left hand corner and
size of the picture area you want
to copy into the window
previously defined. The sizes
and aspect ratios need not be the
same and thus the picture, or
picture section, can be
compressed or skewed to
accommodate the target window.

The combination of optional
transparency and the ability to
control both location and size of
a copy allows for high-level,
complex graphics. The program
above illustrates the process by
placing a smaller picture of
cherries onto a perfectly nice
Cezanne painting using
transparency.

85

Figure 3.7.1. Demonstration of copying pictures onto pictures using transparency.

86

3.8. Plotting

Plotting is the process of presenting data in a format which uses two or three dimensions
to represent the data in a spatially relevant format. Scriptor has a full set of plotting
functions which can handle x(1..npoints), y(1..npoints) data sets or a2(1..nx, 1..ny) data
sets. The ability to take a two-dimensional array and present it graphically has value
for both scientific and graphic arts applications. We will emphasize graphic arts in this
section, and reserve scientific plotting discussions for the numerical methods discussion
in Chapter 4. The following plotting functions and parameters are available:

plot3D(z(), theta, phi, xzoom, yzoom, [ioption] or [cz()]) plots a three dimensional
representation of the 2D double array z(1..ubound1, 1..ubound2) from a view direction
of theta and phi degrees (20, 20 usually works) with size options determined by xzoom
and yzoom (start with 1, 1). The last parameter is either ioption or a 2D array of colors
the same size as z(,). Ioption selects transparent mesh (0), wire frame (1), gray scale (2)
or color (3).

plot3d_xshift assigns as integer assigns the x axis offset shift of the 3D plot. A
positive value shifts the plot to the right.

plot3d_yshift assigns as integer assigns the y axis offset shift of the 3D plot. A
positive value shifts the plot up.

plot_2d_array(a2(), n1, n2, ioption, imod, Qzero) convert data in a2(1..n1, 1..n2) or if
Qzero then a2(0..n1, 0..n2) into a filled contour plot. ioption provides for the option of
apodization (ioption=0, 1=none, 2=triangular (linear) ww = 1 - (rxy/rxymax), rxymax
= (nxbasis-center) = center, 3=lorentzian (quadratic) ww = 1 - rxy^2/rxymax^2 = 1 -
rxy^2/center^2, >3=gaussian (exponential) with fwhm = 1/ioption (1/4, 1/5, etc.), if
negative, the apodization is based on abs(ioption) but the absolute value is plotted. The
parameter imod selects the modulus of the display (min=1, max=4). Add 100 to ioption
for grey scale.

plot_contour(a2(), nx, ny, ncontours, linewidth, ioption) convert data in a2(1..nx,
1..ny) into a line contour plot with ncountours lines. Linewidth = width of the contour
lines. Ioption = 0 (plot on top of white), 1 (plot on top of background color), 2 (plot on
top of whatever was already there). Use ioption=2 to plot a contour on top of a
plot_2d_array display. The contour levels are printed out in the Main text editfield.

87

A two-dimensional contour plot is sometimes called a three-dimensional plot because
the position on the surface is
determined by the two variables x,
y and a third variable, z, define the
contour lines. Despite the x, y, z
nature of a contour plot, it is called
two-dimensional for the same
reason a map is two-dimensional.
A three-dimensional plot is
different in that it projects the z data
out from the surface. Consider the
following examples, which all plot
the z(100, 60) matrix generated in
the short code segments shown at
right.

The choice of plotting method depends upon the goal. If rigor is the key goal, the
contour plot is the best choice. If beauty is the goal, then it is a matter of taste. These
plotting methods can also be used to “plot” pictures, generating some interesting effects.
For example, the following program loads a picture and then plots it using plot_2D
options.

88

When the program at right is run, it
generates the four pictures shown above.
The picture in the upper-left quadrant is
the original picture. The upper-right
quadrant shows the same picture plotted
using plot_2d_array() with ioption=100
(grey-scale) and imod=1 (no modular
display). The lower-left picture uses
color to display the intensity, and
generates a false-color picture. Finally,
the picture in the lower-right quadrant is
created by using plot_contour to draw
contours. This approach simulates an
artists line drawing. The example also
demonstrates the use of the command
“set_to_graphics” which when executed,
selects the graphics panel under program
control.

89

3.8.1. Color to Grey Scale Options

To convert a picture that has been loaded into the buffer into a single two-dimensional
array, the following statement is used:

buffer_to_array(a2(), ioption)

which converts the pixels in the
buffer to data in a2(1..nx, 1..ny)
based on ioption (see example at
right where the number at upper right
is ioption and the original picture is
in the upper left canvas).

If ioption=0, then each RGB value is
given equal weight (not shown);
if ioption=1, then red is given double
the weight;
if ioption=2, then green is given
double the weight;
if ioption=3, then blue is given
double the weight;
if ioption=4, then use Adobe standard
(red*0.7, blue*0.89, green*0.41);
if ioption=5, then use grey scale
(same as ioption 1 in reality);
if ioption=6, then use only the red
channel;
if ioption=7, then use only the green channel;
if ioption=8, then use only the blue channel;
if ioption is negative, the picture is inverted using a weighting based on abs(ioption).
If there are multiple buffers, only the picture in buffer 1 is worked on. The array, a2(),
is redimensioned by this statement to match the buffer size. Because the user has
created the buffer, the size is known, but if more convenient, the user can always
(re)discover the size by including the following statements following the
buffer_to_array statement:

nx=ubound(a2, 1)
ny=ubound(a2, 2)

90

3.8.2. Working with Color Pictures

Scriptor provides bit level control of RGB images by using the buffer_to_arrays() and
buffer_fill_from_arrays() methods:

buffer_to_arrays((ired(), igreen(), iblue())

where the red channel is stored into ired(1..buffer_width, 1..buffer_height), the green
into igreen(1..buffer_width, 1..buffer_height) and the blue into iblue(1..buffer_width,
1..buffer_height). The three arrays are redimensioned to the size of the buffer. One can
then manipulate these arrays and load them back into the buffer using:
buffer_fill_from_arrays(ired(), igreen(), iblue()).

The program segment at upper left generates the collection at right (the creation of the
multiple buffer and subroutines are not shown). The insert at upper left is the original
picture. Inserts 1, 2 and 3 are generated by zeroing out all the arrays except red (1),
green (2) and blue (3). Thus, these three examples simply show the individual
components which make up the final, full color RGB picture. Inserts 4, 5, and 6 have
the red, green and blue arrays replaced with their square root and then renormalized to
yield the same max intensity. Insert 7 has all three channels handled in the same way

91

which decreases contrast. Insert 8 has the intensity in all three channels squared and
then renormalized. This process increases contrast.

3.9. Color Blending and Variable Transparency

There are two types of transparency in graphics manipulations. Type I transparency is
all or nothing. We investigated this concept in Section 3.7, where the white portions of
the picture can be made invisible (transparent) so that a picture underneath is visible.
Type I transparency is very fast because it is supported by the internal graphics
commands. Type II transparency allows a graphics object to be partially transparent so
that objects underneath are visible, but have their colors blended (modified) by the
colors and transparency level of the top object. Those familiar with high-level graphics
programs (Adobe Illustrator, ACD Systems Canvas X, Freeverse Lineform, etc.) are
likely familiar with the nature of transparency. Transparency is specified not only by
the opacity (0% is completely transparent, 100% is solid) but also the type of interaction
between the colors of the overlapping objects. By convention the blend color is the
original color of the object on top, the base color is the underlying color in the artwork
and the resulting color is the color resulting from the blending process.

 Transparency blending is implemented by invoking the following internal
method, which modifies a single buffer pixel based on one of six blendtypes:

buffer_pixel_blend(kx, ky, opacity [, blendtype])=blend_color

where kx and ky reference the x and y pixel location within the buffer, opacity ranges
from 0.0 (100% Transparency) to 1.0 (0% Transparency) and the optional integer
parameter, blendtype, determines the method of blending. If this parameter is not
present, a default value of 1 is assumed, and normal blending is carried out (see below).
The blend_color is the color of the object that is on top and which is blended into the
pixel color found at position kx and ky. This pixel at location kx and ky is thus
replaced by the result of the blending process. The following paragraphs provide an
overview of the various types of transparency blends. Each example was created by
using a white background, a solid blue square of opacity=1, a red overlapping square
with variable opacity followed by a green overlapping square with identical opacity.
The displayed opacities are 0.25 (75% transparency, left), 0.5 (middle) and 0.75 (25%
transparency, right).

92

Normal (blend type = 1): The colors are blended as if the objects are transparent filters
with lighting from underneath. This is the blending that the human visual cortex finds
the most pleasing because it is familiar and expected, and provides intuitive depth
perception. Thus, normal helps the eye figure out which objects are behind and which
are in front. The formula that represents this process is:

result.red = opacity*blend.red + (1 – opacity)*base.red
result.green = opacity*blend.green + (1 – opacity)*base.green
result.blue = opacity*blend.blue + (1 – opacity)*base.blue

where result is the color that results from blending the blend (front) color into the base
(back) color. Each component is calculated separately using the same weighting
scheme. A subroutine that carries out this transparency is presented below for
demonstration purposes.

 sub pixel_blend1(kx as integer, ky as integer, opacity as double, assigns c0 as color)
 ' reads the color of buffer pixel at kx, ky and blends the color c0
 ' into that pixel based on the opacity (0.0 to 1.0) using
 ' the adobe "normal" convention (weighted rgb averaging)
 dim jr, jg, jb as integer
 dim tp as double
 dim c1 as color
 tp=1.0-opacity // transparency equals one minus opacity
 c1=buffer_pixel(kx, ky) // get buffer BASE pixel color
// calculate RESULT color based on weighted RGB averages
 jr = opacity*c0.red+tp*c1.red
 jg = opacity*c0.green+tp*c1.green
 jb = opacity*c0.blue+tp*c1.blue
 buffer_pixel(kx, ky)=rgb(jr, jg, jb)
end sub

93

The above subroutine is presented for demonstration purposes. There is no need to use
it because the internal buffer_pixel_blend routine implements the identical algorithm.
Note that the blending math is done using the extensions .red, .green and .blue to rapidly
extract the rgb components from a color. The template variable_transparency.txt can be
used to explore transparency blends in more detail.

 Subtractive Blending (blend type = 2). Normal blending simulates transparent filters
with backlighting, and is the most natural of the blends. Subtractive blending simulates
the properties of painting one or more objects on top of previous objects with variable
opacities. The implementation is similar to that used by a color printer that uses three
ink colors (cyan, magenta and yellow) to create a colored picture on a white background
(white paper). However, because the inks have various levels of opacity, and the colors
are by their nature added on top of each other, the result is different. The results are
shown above for both RGB and CMY color sets. The algorithm is shown below:

tp=1.0-opacity
c1=buffer_pixel(kx, ky)
pc= max(opacity*c0.cyan, tp*c1.cyan)
pm = max(opacity*c0.magenta , tp*c1.magenta)
py = max(opacity*c0.yellow , tp*c1.yellow)
buffer_pixel(kx, ky)=cmy(pc, pm, py)

94

Hue-based Blending (blend type = 3). Averaging the hue while manipulating the
saturation and opacity to enhance the overlap regions provides the artistic blending that
is shown above. This type of blending is sometimes called hue-shifting, but it also
involves manipulation of the saturation and value to enhance the visibility of the overlap
regions.

tp=1.0-opacity
c1=buffer_pixel(kx, ky)
ph = opacity*c0.hue+ tp*c1.hue
ps = max(opacity*c0.saturation, tp*c1.saturation)
v0=min(opacity*c0.value, tp*c1.value)
if v0>0.5 then
 pv=v0
else
 pv=max(opacity*c0.value, tp*c1.value)
end if
buffer_pixel(kx, ky)=hsv(ph, ps, pv)

Additive Blending with lightening (blend type = 4). If one carries out a simple RGB
average as in normal blending, but lightens the overlap regions, one gets the results
shown above. This kind of blending is more artistic than realistic, but should be
considered when the number of overlapping objects is large and a majority have
opacities greater than half.

95

Additive Blending with darkening (blend type = 5). If one carries out a simple RGB
average as in normal blending, but darkens the overlap regions, one gets the results
shown above. This kind of blending should be considered when the number of
overlapping objects is large and a majority have opacities less than half. Using blend
types of 4 or 5 is to be avoided if one can use blend type=1, the default, with satisfactory
results. The default (blend type = 1) is more realistic and will provide the viewer with a
better perspective on the objects.

Additive Blending with Moiré Refractive Texture (blend type = 6). If one carries out a
simple RGB average as in normal blending, but mediates the resulting color with an
artificial texture that simulates the refraction and interference of the light by two nearly
parallel plates, one gets the interesting results shown above. The blending looks
realistic to the eye, is accurate in terms of resultant color, and the moiré patterns help
delineate the overlapping regions.

96

Chapter 4
Numerical Methods

MathScriptor provides a significant number of internal functions designed for numerical
methods. The purpose of this chapter is to provide a listing of those internal functions
that are relevant to numerical methods, as well as a brief discussion of usage. Many of
the functions described in this chapter require MathScriptor mode, which means the
program must be registered and MathScriptor mode selected under the compiler menu.

4.1. Matrix Methods

Before listing all of the matrix methods, it is important to provide a perspective on
MathScriptor for those users who have experience with MatLab. Matrices in
MathScriptor are explicit, not implicit, and manipulation must be carried out on the
individual elements. Thus, if A and B are both matrices, you cannot use a statement like
the following:

C = A*B

to multiply matrix A and B. However, this operation can by done in a single operation
by using a function, e.g.

This function is called by using the following:

c()=matmult(a(), b())

A few things to notice. First, a function can return an entire matrix by assigning a
function to have type As double(,). Then the function must return the entire matrix
using the statement return c2() [or if you prefer, just return c2]. Programmers are

97

invariably puzzled about the protocols of when to include versus omit a comma in the
parentheses. For example, a comma was included in assigning the data type but not in
the return statement. This seems to be inconsistent because both statements represent
the identical matrix. The rule is as follows: Only include a comma when the matrix is
first being defined, and never again. Thus, in the function definition, the properties of
the return matrix were defined. The compiler, when it finds the return statement,
already knows by the function definition that a two-dimensional matrix is to be returned.
The use of “(,)” following the variable is redundant. The compiler generates a syntax
error which is handled by either removing the comma, or the comma and parentheses.
The clever reader will recognize that the parentheses are also redundant, and by these
rules, should also generate a syntax error. However, parentheses are ignored by the
compiler when they are redundant.

The following matrix methods are available in MathScriptor. The subroutines return the
matrix results as a ByRef parameter, whereas the functions return the matrix via
assignment. For example, b2=matinv(a2) or matrix_invert(a2, b2) both invert a2(,) and
place the result in b2(,). In most cases matrices can be used without including the
parens when the entire matrix is to be passed or is to be assigned.

matdup(a2()) as double(,)
copy the matrix a2(n1, n2) into a new matrix b2(n1, n2).
Usage example: b2 = matdup(a2()) where b2 is a two-dimensional array.
Note that the (0, 0), (0, 1), (1, 0) elements are included in duplication. It is essential that
the a2(,) matrix be dimed or redimed to the desired size prior to calling matdup.

matidn(nsize) as double(,)
initialize a two-dimensional identity matrix of dimension nsize by nsize with all
elements equal to zero except diagonals which equal 1. Usage example: a2=matidn(10)
where a2 is a two-dimensional array. Note that the a2(0, 0) element is also created and
set to one.

matinv(a2()) as double(,)
invert the two-dimensional square matrix a2()
Usage example: b2=matinv(a2()) where b2 is a two-dimensional array. Note that the (0,
0), (0, 1), (1, 0) elements of a2 are ignored. It is essential that the a2(,) matrix be square
and be dimed or redimed to the desired size prior to calling matinv.

matmult(a2(), b2()) as double(,)
multiply a2(n1, n2) by b2(n2, n3) to create c2(n1, n3). Usage example:
c2=matmult(a2(), b2()). Note that the (0, 0), (0, 1), (1, 0) elements are ignored. It is
essential that the a2(,) and b2(,) matrices be dimed or redimed to the correct sizes prior
to calling matmult.

98

matrand(n1, n2) as double(,)
initialize a two-dimensional matrix of dimension n1xn2 with random elements from -1
to 1. Usage example: a2=matrand(10, 10) where a2 is a two-dimensional array.
Note that the (0, 0), (0, 1), (1, 0) elements of a2 are also created and randomized.

matrix_diagonalize(h2(), v2(), e1(), nsize, nroots)
diagonalize the square matrix h2(1..nsize, 1..nsize) to generate the lowest nroot
solutions. Place the eigenvectors in v2(vector_number, root_number) and the
eigenvalues in e1(1..nroots), e1(1) is the smallest or most negative eigenvalue.

matrix_gauss_jordan(a2(), b12(), nsize [, ms])
use Gauss Jordan elimination to solve the set of linear equations in the square matrix
a2(1..nsize, 1..nsize) and replace it with its inverse and return the ms solution vectors
(ms<=nsize) in the matrix b2(1..nsize, 1..ms). If ms=1 (a single solution vector), use a
single array b1() and leave out last parameter. Less efficient than matrix_invert but
provides solution vector(s).

matrix_invert(a2(), det, nsize)
use LU decomposition to replace the square matrix a2(1..nsize, 1..nsize) with its inverse
and return the determinant in det. Provides the determinant but no solution vectors.
This method is more efficient than matrix_gauss_jordan.

matrix_svd(a2(), v2(), w1(), m, n)
given the matrix a2(1..m, 1..n) compute its singular value decomposition. Upon return,
the a2() matrix is replaced by the u2() matrix with the v2() matrix and the w1 diagonal
elements are returned in the parameters so designated.

matrix_svd_backsubstitute(u2(), v2(), w1(), m, n, b1(), x1())
This subroutine is called after matrix_svd is executed and the values of u2(), v2() and
w1() are exactly those returned in the a2(), v2(), w1() matrix_svd parameter sequence.
What is needed first, however, is to go through the w1() array and zero out those that
have a magnitude that is significantly smaller than the largest weight. Because all
calculations are done in double precision, one can carry out this zeroing process with
confidence whenever w1(k) is less than 10-6 of wmax. Some trial and error is required
for values above this cut-off. Then one needs to supply a value for the b(1..m) vector to
extract the x(1..n) vector, which is the desired result.

99

mattran(a2()) as double(,)
transpose the matrix a2(n1, n2) into the matrix b2(n2, n1). Usage example:
b2=mattran(a2()) where b2 is a two-dimensional array. Note that the (0, 0), (0, 1), (1, 0)
elements are included in transposition. It is essential that the a2(,) matrix be dimed or
redimed to the exact size prior to calling mattran.

matzero(n1, n2) as double(,)
initialize a two-dimensional matrix of dimension n1xn2 with all elements equal to zero.
Usage example: a2=matzero(10, 10) where a2 is a two-dimensional array.
Note that the a2(0, 0) element is also created and set to zero, and that the matrix created
is redimensioned to n1 by n2 [redim a2(n1, n2)].

4.2. Singular Value Decomposition

Linear algebra is a field of mathematics that deals with the use of matrices to solve
problems in both pure and applied math. Matrix decomposition is the process of
factorizing a matrix into a more useful (canonical) form. The term canonical has many
different meanings (normal, standard form, differential form), but in the present case, it
means that each entry or component has a direct relationship to an observable. Thus,
when a matrix is decomposed, the result is a matrix which has vectors or components
that have been simplified so that the result is more easily evaluated or assigned to
observables.

Singular value decomposition (SVD) is the most general, and powerful, of the
decomposition methods. The method is used extensively within MathScriptor as the
method of choice in fitting polynomials of all types. The significant advantage of SVD
is that it helps eliminate degrees of freedom that are redundant or irrelevant, and prevent
these additional degrees of freedom from damaging the quality of the analysis. Singular
value decomposition (SVD) solves the matrix problem shown below:

a11 … a1n
  
am1  amn

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ =

u11 … u1n
  
um1  umn

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ •

w1 0


0 wn

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ •

v11 … v1n
  
vn1  vnn

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

T

where the T indicates the transpose of matrix v(1..n, 1..n). In our adaptation, the
diagonal matrix w is returned as a one-dimensional array containing the diagonal
elements. An alternative view of the above matrix equation is the following:

Aij = wkUikVjk
k=1

n

∑

100

SVD takes the matrix A and decomposes it into a set of singular values with weighting
factors wk. One way of viewing SVD is a method of solving a set of m linear equations
involving n unknowns. There is no more reliable method of doing a linear least squares
fit, and SVD is used in many of the internal fit methods. SVD is also used extensively
to extract component spectra from time resolved spectra. In many cases, SVD will yield
a set of weighting factors dominated by only a small number of weighting factors, w(),
with the other weighting factors near to zero. Then it is important to zero out these
values and use backsubstitution to extract vectors that are physically realistic and not
contaminated by noise.

The matrix_svd_backsubstitute() method is called after the matrix_svd is run and the
values of U(), V() and W() are exactly those returned in the A(), V(), W() matrix_svd
parameter sequence. Note that you do not need to take the transpose of v(). What is
needed first, however, is to go through the w() array and zero out those that have a
magnitude that is significantly smaller than the largest weight. Because all calculations
are done in double precision, you can carry out this zeroing process with confidence
whenever wk is less than 10-6 of wmax. Some trial and error is required for values above
this cut-off. Then you need to supply a value for the b(1..m) vector to extract the x(1..n)
vector, which is the desired result:

x = V i
w1 0


0 wn

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
iUT ib

There are times when it is not advisable to zero out any of the w’s, regardless of relative
magnitude. It is sometimes better to simply allow the small values to propagate
through, and for that reason, it is important to test both options and determine which one
yields the best solution. Small values of wi usually signal that the working equation has
too many degrees of freedom and requires modification. Using the weights to adjust the
working equation often yields a far superior result than simply zeroing out the weights
below a given threshold.

101

The subroutine at right demonstrates
the use of SVD to carry out a least
squares fit based on a polynomial
function. But this same method can be
used to fit any linear function and all
that is needed is to replace the function
poly() with another which returns
afunc(1..ma) as a function of the x(i)
values. Any linear function is allowed,
which means that afunc(i)=x(i)^nexp(i),
where nexp(i) is a positive or negative
integer.

Going through this subroutine in detail
should provide the interested reader
with an excellent perspective on the
meaning of the individual vectors and
matrices that are used in the SVD
methods. Note that this subroutine is
part of a module which declares the
following variables

u(ndata, nparams)
v(nparams, nparams)
w(nparams)

as doubles, where ndata is the number
of data pairs [x(1..ndata), y(1..ndata)].

Note that both matrix_svd() and
matrix_svd_backsubstitute() are used in
this subroutine.

The subroutine also returns calculated
values of y in the array ycalc(1..ndata),
where each value returns the value
ycalc(i) = a(1)+a(2)*x(i)
+a(3)*x(i)^2+… a(ma)*x(i)^ndegree.

102

The covariance matrix can be generated by calling the subroutine svdvar() which places
the covariance matrix into the matrix cvm(1..nparams, 1..nparams). The error in each of
the coefficients is given by the square root of the diagonal elements:

aj = a(j) ± sqrt(cvm(j, j))

The covariance matrix provides a quantitative measure of the relationship between the
individual coefficients. Consider the two coefficients a(r) and a(s) and the covariant
matrix elements connecting them, crs = cvm(r, s). If crs is zero, it means the two
coefficients are invariant to changes in
the other one. For a fit, this is a good
situation. If crs is positive, then a change
in a(r) will generate a corresponding
change in a(s) in the same direction.
Conversely, if crs is negative it means as
a(r) increases, a(s) decreases, and vice
versa. The larger the value, the more
correlated is the correspondence. If two
coefficients are highly correlated, it is
likely that both are not needed and the
function can be simplified. High
correlation also means it is less likely that
the values of the coefficients can be
assigned with accuracy.

4.3. Fitting Methods

MathScriptor provides a number of very powerful fitting routines based on singular
value decomposition. These methods provide for very rapid fitting of linear functions to
a data set, and all use SVD to provide accurate and stable fits.
The following standard polynomial fits are available:

fit_polynomial(x(), y(), ndata, a(), nparams, rmserror, rsquared)
fits the data in the x(1..ndata), y(1..ndata) arrays using SVD to assign the parameters
a(1..nparams) via least squares regression. The equation to be fit is:

y = a(1)+a(2)*x + a(3)*x2 + a(4)*x3 + ... a(nparams)*x(nparams-1)

103

Fit_lanczos(x(), y(), ndata, a(), nparams, rmserror, rsquared) fits via SVD least squares
methods the data in x(1..ndata), y(1..ndata) to a Lanczos-type polynomial with nparams
parameters returned in a(1..nparams):

y = a(1)+a(2)/x + a(3)/x2 + a(4)/x3 + ... a(nparams)/x(nparams-1)

The RMS (root-mean-squared) error is returned in rmserror. The function that is fit is
credited to the Hungarian mathematician and physicist, Cornelius Lanczos, who made
many contributions to relativity theory and numerical methods. This function was
originally proposed as a method of fitting the loggamma function, but has now been
generalized to any fit of this type. The name Lanczos is pronounced “lan-sosh”.

Fit_lanczos2(x(), y(), ndata, a(), nparams, rmserror, rsquared) fits via SVD least squares
methods the data in x(1..ndata), y(1..ndata) to the non-standard (or mixed) Lanczos-type
polynomial

y=a(1)+a(2)/x+a(3)*x+a(4)/x2+a(5)*x2+a(6)/x3+a(7)*x3 + …

The programmer can evaluate this polynomial by using the function lanczos2(iterm, x)
as follows:

 for j=1 to nparams
 ypi=ypi+a(j)*lanczos2(j, x0)
 next

lanczos2(i, x) as double; returns
the ith term of the type2 Lanczos
polynomial for argument x.

There are times when a Lanczos2
fit is significantly better than all
the others. One such example is
shown in the figure at right. In
general, any function that appears
to be a mixture of an exponential
that approach infinity as x
approaches 0, but has a broad tail
that extends to high x, is a perfect candidate for a Lanczos2 fit. Such are often
encountered in science and engineering.

104

4.3.1. Fitting to Orthogonal Polynomials

Polynomials pm(x) and pn(x) are said to be orthogonal over the range x=a to x=b if they
obey the following integral relationship:

w x() pm x()
a

b

∫ pn x()dx=0(m ≠n)

where w(x) is a weighting function, normally assumed to be unity. Fitting a data set to
orthogonal polynomials instead of standard polynomials has significant advantages in
certain circumstances. The key advantage is that truncation error is reduced
significantly. Second, in some cases, fewer parameters are necessary to achieve a given
goodness of fit. Third, there are situations in science and engineering where a solution
in terms of orthogonal polynomials can be transferred to a physical solution in a
straight-forward fashion. One example is the design of electronic filters based on the fit
of the desired response function to Chebyshev polynomials.

MathScriptor includes two internal orthogonal polynomials which can be calculated or
used in least-squares fits. The simplest orthogonal polynomial is the Legendre
polynomials given by the function (m = 0, 1, 2, …):

Pm x()= 1

2m m!
d m

dxm
x2 −1()m⎡

⎣⎢
⎤
⎦⎥

and provided by the function legendre(n, x) as double, where n = m+1 = 1, 2, 3, … and
x is the argument. The first ten functions are listed below:

105

and shown in Figure 4.3.1. The other orthogonal polynomial is the well-known
Chebyshev polynomial given by the generating equations:

and the internal function that provides the polynomials is given by chebyshev(np, x) as
double, where np = n+1 = 1, 2, 3, … The first seven solutions are listed below:

These polynomials are compared to the Legendre polynomials in Fig. 4.3.1. The
following two functions are available:

Fit_chebyshev(x(), y(), ndata, a(), nparams, rmserror, rsquared) fits via SVD least
squares methods the data in x(1..ndata), y(1..ndata) to orthogonal Chebyshev
polynomial with weights returned in a(1..nparams). The following program segment
generates a value of y (ypi) for a given value of x (x0):

 for j=1 to nparams
 ypi=ypi+a(j)*chebyshev(j, x0)
 next

106

Figure 4.3.1. Comparison of the Legendre (top) and Chebyshev (bottom) polynomials for np =
2 – 8, where np is the argument for the functions Legendre(np, x) and Chebyshev(np, x).

107

Fit_legendre(x(), y(), ndata, a(), rmserror, rsquared) fits via SVD least squares methods
the data in x(1..ndata), y(1..ndata) to orthogonal Legendre polynomial with weights
returned in a(1..nparams). The following program segment generates a value of y (ypi)
for a given value of x (x0):

 for j=1 to nparams
 ypi=ypi+a(j)*legendre(j, x0)
 next

We should clear up one common source of confusion now. Although these functions
are specified to be orthogonal only for the x region from –1 to 1, these polynomials are
actually nearest neighbor orthogonal over any symmetric region centered at zero.
Furthermore, one can use these functions to fit a data set over any range desired if one is
willing to give up some of the advantages inherent in using orthogonal polynomials. If,
on the other hand, it is important to optimize the fit based on an orthogonal basis set, the
solution is to transpose the data so that the fit is carried out over the range –1 to 1. This
should be done linearly so that:

xnew = atran + btran*xold

In practice, this rarely is worth doing because the SVD routines that are used to carry
out the fitting are very stable and well-behaved.

108

4.3.2. Other Fitting Options

There are a number of additional fitting routines available in MathScriptor and these are
presented below:

Fit_exponential(x(), y(), ndata, a(), rmserror, rsquared) fits via SVD least squares
methods the data in x(1..ndata), y(1..ndata) to the equation y = a(1)*exp(a(2)*x). Note
that unlike the other linear fits, nparams is not a parameter because it is fixed at 2. The
chi-squared goodness of fit is returned in chisqr.

Fit_genpoly(x(), y(), ndata, a(), b(), nparams) as string
returns a string summary of the best fit general polynomial for the data x(1..ndata),
y(1..ndata) using a maximum of nparam fit parameters. Nparam must be less than 6.
The equation that is fit is a(1)*x^b(1) + a(2)*x^b(2)+ ... +a(nparams)*x^b(nparams),
where b(1)..b(nparams) are integers in the range -10 to 10. This function is overloaded
and exists in two forms. Above method returns the coefficients instead of the best fit
line. Both forms are iterative and are CPU intensive.

An alternative (overloaded) form is as follows:

Fit_genpoly(x(), y(), ndata, nparams, xp(), yp(), xmin, xmax, npoints) as string
returns a string summary of the best fit general polynomial for the data x(1..ndata),
y(1..ndata) using a maximum of nparam fit parameters. Nparam must be less than 6.
The equation that is fit is a(1)*x^b(1) + a(2)*x^b(2)+ ... +a(nparams)*x^b(nparams),
where b(1)..b(nparams) are integers in the range -10 to 10. This function then returns
calculated values in xp(1..npoints), yp(1..npoints) for x in the range xmin to xmax.

Fit_trendline([itype], x(), y(), ndata, nparams, xp(), yp(), xmin, xmax, npoints) as
string returns a string summary of the best fit trendline for the data x(1..ndata),
y(1..ndata) using a maximum of nparam fit parameters. This function then returns
calculated values in xp(1..npoints), yp(1..npoints) for x in the range xmin to xmax. If
itype is included, it selects the trendline fit to be: (1)polynomial, (2)lanczos,
(3)lanczos2, (4)legendre, (5)chebyshev, (6)exponential.

The last two functions are the most useful of the fitting functions as they cover all the
options and return a set of predicted values ready for plotting in xp(1..npoints),
yp(1..npoints). Although genpoly uses SVD, it is also iterative and therefore slow. A
full nparams=5 fit can take many minutes. The following graphics provide a convenient
summary of these functions. These are also available inside the program via the Tips
menu.

109

110

4.3.3. Special Fitting Functions

There are two fitting functions that are available in MathScriptor which solve unique
fitting goals.

fit_henderson_hasselbalch(pH(), y(), n, a(), pka(), nterms, xp(), yp(), x1, x2, np) as
string carries out a one (nterms=1), two (nterms=2) or three (nterms=3) term Henderson
Hasselbalch fit to some numerical property of an ionizable molecule or protein. The
measurements in y(1..n) as a function of pH(1..n) are fit to the equation:

where the full three term expression is shown. The function returns the fit parameters in
a(0..2) and pka(1..2) and the result in xp(1..np) and yp(1..np) from x1 to x2 where np is
the number of points which should be set by the user. If np=0, no curve is returned.
The function returns a string summarizing the results of the fit. An example of a two
component fit is shown below along with the text output.

Fit to a0+a1/(1+10^(ph-
pka1))+a2/(1+10^(ph-pka2))

rmserror*nparams(=5) =
0.1974552
Renormalized to original Y
values:
a0=0.9534774
a1=0.3214927
pka1=3.83506
a2=-0.8434066
pka2=6.767612

Protein Property= a0 +

a1

1+10(pH− pKa
(1))

+
a2

1+10(pH− pKa
(2))

+
a3

1+10(pH− pKa
(3))

111

Numerical_fit_to_gaussians(xkk(), y(), n, nbands, niter, xp(), yp(), x1, x2, np [,
sharpen]) as string is a method that takes spectral data in wavenumber space and fits it
to a collection of Gaussian bands. The spectrum should be normalized in y(1..n) and
must have the energy axis, xkk(1..n) be in kiloKaysers (kK = 1000 cm-1). The initial
number of Gaussians is set by nbands and one should seek to use a minimum number of
Gaussians to fit the spectrum. Trial and error is necessary. The total number of
iterations is set by niter where niter=500 is usually adequate. The spectrum based on the
sum of gaussians is returned in xp(1..np) and yp(1..np) from x1 to x2, which also must
be in kK. If the optional parameter sharpen is included, the spectrum in xp(), yp() can
be sharpened (0.0<sharpen <0.75) or broadened (-0.9<sharpen <0.0). The string that is
returned is a program that can be used to regenerate the spectrum and includes a list of
all the Gaussian bands.
Numerical_interpolate_points(x(), y(),
n, xp(), yp(), byref np, nlevel) This
method uses Lagrangian interpolation to
transfer the sparse x(1..n), y(1..n) arrays
into dense xp(1..np), yp(1..np) arrays
which permits smooth plotting the
results. The level of the interpolation is
set by nlevel (=2, 3, 4 or 5). Note that
the number of points in the returned
arrays may be modified slightly to
accommodate the Lagrangian fit, and
hence the np variable is passed by
reference and should be examined before
plotting the result. The examples shown
at right demonstrate two and five point
interpolation. In general, five point
interpolation is recommended, but if the
data in x() and y() are very sparse, lower
values of nlevel may be necessary to
avoid false maxima.

112

Numerical_fraction(f1, ndigits) as string converts a real number to its equivalent
fraction, or a fraction that reproduces the number to an accuracy of ndigits. The string
that is returned includes the fraction as well as the expansion of the fraction to a
precision of 32 digits. A maximum of 15 digits of precision is allowed. An example of
finding a fraction that approximates π is shown below:
s1=numerical_fraction(const_pi, 8)
print(s1)
93343/29712 =
3.1415926225094238018309100700054

Numerical_generate_expression(target, ndepth) as string return an expression, f(...),
that provides the best fit to the target. This function not only assigns the function but
the values of parameters of that function, and minimizes the error given by abs(f(...)-
target)/abs(target). The value of ndepth controls the depth of the search and assigns the
maximum value for the integers in the expressions. If ndepth is negative, the depth of
search is equal to abs(ndepth) but the best expression for each expression is listed for
comparison. This function is useful whenever a calculation yields a value which you
suspect is represented by one of the above expressions. Values of ndepth=15 provide a
fairly rapid search and are the minimum ndepth used regardless of input. Ndepth values
above 15 take progressively longer such that ndepth=100 will take many hours. The
target should be in the range ±(0.01 to ndepth) for this method to explore all of the
expressions listed above. An example is shown below revealing the expression
responsible for a complex variable analysis. The number in curly-brackets “{}” at the
end of each expression gives the degrees of freedom. If two results yield identical error,
one should choose the expression with the smallest degrees of freedom. For the
convenience of the user, the result for numerical_fraction(target, 8) is printed at the
bottom of the output.

target=value(real(pow("0, 1", "0, 1"))) // i^i
s1=numerical_generate_expression(target, -15)
print(s1)

Best result for target = 0.2078795763507619
exp((-1/2)*const_pi) = 0.207879576350762 (err~0)[0.54s]{8}

Options for target = 2.078795763507619E-1
exp((-1/2)*const_pi) = 0.207879576350762 (err~0)[0.54s]{8}
(3/11)*log((7/2)*const_pi^(-3/7)) = 0.207863030724132 (err=7.959E-5)[0.14s]{34}
9*sin(const_pi/136) = 0.20788102487701 (err=6.968E-6)[0.45s]{147}
-9*cos(69*const_pi/136) = 0.207881024877009 (err=6.968E-6)[0.45s]{215}
(1/8)*const_pi^(4/9) = 0.207905276692377 (err=1.236E-4)[0.05s]{23}
(5/2)*(factorial(2)/factorial(4)) = 0.208333333333333 (err=2.183E-3)[0.05s]{15}
(11/10)*sqrt(1/28) = 0.207880460155075 (err=4.252E-6)[0.05s]{51}
... [search time in seconds] {degrees of freedom}
For reference, numerical_fraction(target, 8) returns 4944/23783 =
0.20787957784972459319682125888239 (err=7.211E-9)

113

4.3.4. On the Goodness and Quality of a Fit

The commonly defined measure of goodness of fit is chisqr:

Χ2 =

yi
obsvd − yi

calc()2

σ i
i=1

n∑ = yi
obsvd − yi

calc()2

i=1

n∑ if no σ i data

where the sum is over all n measurements and σ i is the error in the ith measurement.
The smaller the chisqr, the better the fit. When this is not known, or is ignored as in our
fitting functions, then σ i is set equal to 1, not 0, for all i. Some definitions replace σ i
with yi

obsvd , a valid practice provided there are no values of yi
obsvd = 0, which generates

infinity. Similarly, the error term σ i must never equal zero for any i. For a variety of
reasons, the safest definition of chisqr is as follows:

Χ2 = yi

obsvd − yi
calc()2

i=1

n∑

 Given the above ambiguity regarding the assignment of X2, the internal fitting
programs return the RMS (root-mean-square) error as defined by the following
equation:

RMS error = 1

n
(yi

obsvd − yi
calc)2

i=1

n

∑

The best fit is determined by minimizing the RMS error times the number of parameters
included in the fit:

Minimize for best fit= N parameters × RMS error

This equation follows from a recognition that if a fit requiring fewer parameters
generates the same error, the fit involving fewer parameters must be superior because it
achieved the same result with fewer degrees of freedom. From another perspective, the
simpler the solution, the better (e.g. Occam’s razor, lex parsimoniae). The only time
the above criterion for best fit should not be used is when an equation with a fixed
number of parameters is known to best represent the physical process under study.

114

4.3.5. Coefficient of Determination

Another commonly used measure of the quality of fit is the coefficient of determination,
which is given the symbol, R2.

R2 =
yi

calc − yave()2

i=1

n∑
yi

obsvd − yave()2

i=1

n∑

where yave is the average of the original data. As the fit gets better, R2 approaches 1.0.
The advantage of the coefficient of determination is that it typically ranges in a well
defined range from 0.5 (poor fit) to 1.0 (a perfect fit). However, if the data are
dominated by random fluctuations, R2 does not provide a very useful measure of the
goodness or quality of the fit. Nevertheless, it is so commonly used that reporting this
value is nearly as common as reporting rmserror or X2. And everyone agrees that an R2
value of 1.0 means a perfect fit.

4.4. Numerical Integration

Numerical integration is the process of approximating an integral by replacing the
formal equation with a sum, e.g.

f (x)dx =
a

b

∫ wi f (xi
i=1

n

∑) (4.4.1)

The above formula is known as a quadrature rule or quadrature approximation, and is
carried out by assigning values for n (the number of points), xi (the abscissas, the values
of x at which the function is evaluated) and wi (the weights at each evaluation point).
Virtually all numerical methods of integration are based on the above quadrature
formula, but they differ in how the weights and abscissas are selected.

The simplest approach is to assign the values of xi starting at a and ending at b in small
equal increments of Δx. Then all the weights are the same and equal Δx. The accuracy
of this method increases as the number of points increases (and Δx decreases). The
method improves in accuracy as the number of points increase, although truncation error
generally causes the accuracy to decrease at some point. Another problem with this
simple approach is that it is inefficient, and quite impossible if the integration is from -∞
to +∞. To provide greater accuracy and permit extension of the numerical methods to

115

handle indefinite integrals, Gaussian-quadrature methods have been developed. There
are two types supported by MathScriptor.

4.4.1. Gauss-Legendre Quadrature

Gauss-Legendre methods handle the integral shown in Eq. 4.4.1. The weights and
abscissas (xi values) are determined by using the solutions of the Legendre polynomial
to determine both values to yield maximum accuracy. As a simple example, if the
integral is from –1 to 1, then the weights are given by the following equation,

wi =
2

1− xi
2() Pn

' xi()()2
 (4.4.2)

and the abscissas are the roots of the Legendre polynomials. Any finite range can be
renormalized to make use of these abscissas and weights, so Gauss-Legendre quadrature
is completely general. The following MathScriptor method provides the abscissas and
weights for any definite integral evaluated from x1 to x2.

gauss_legendre(x1, x2, x1(), w1(), n), which generates the Gauss-Legendre abscissas
x(1:n) and weights w(1:n) for n-point quadrature for integration from x1 to x2. For
example, if the goal is to integrate the equation:

 f (x)=exp(−x)sin(8x2/3)+1

from 0 to 2, then the following code segment will carry out the integration.

116

with the following printout:

 Integral(n = 4) = 2.106663539467
 Integral(n = 8) = 2.017911793792
 Integral(n = 16) = 2.016456684779
 Integral(n = 32) = 2.016298066544
 Integral(n = 64) = 2.016281583851
 Integral(n = 128) = 2.016279906892
 Integral(n = 256) = 2.016279738313
 Integral(n = 512) = 2.016279721466
 Integral(n = 1024) = 2.016279719780
 Integral(n = 2048) = 2.016279719621
 Integral(n = 4096) = 2.016279719605
 Integral(n = 8192) = 2.016279719600

The value of printing out the results as a function of n in the fashion shown is that each
doubling of the value generates, on average, another significant digit of accuracy. This
general rule is very approximate, by watching the change in value provides a rough idea
of the accuracy of the last number. If the integral values are jumping up and down,
rather than monotonically converging on a value, then the method is failing and one
cannot have much confidence in the result for high n. But the vast majority of integrals
can be handled by this method and the value at n=8192 is often accurate to 8 or more
significant digits. The example above yielded 12 significant digits.

117

One of the strengths of Gauss-Legendre quadrature is the excellent handling of edge
effects. As shown in the graph above, where the abscissas are marked with dots and the
weights are indicated by the thickness of the vertical lines, the ends are measured with
higher resolution than the values near the center of the span. This approach is optimal
for a majority of functions.

118

4.4.2. Gauss-Laguerre Quadrature

Gauss-Laguerre quadrature is designed to handle definite integrals for zero to infinity, -
infinity to zero, or –infinity to infinity:

f (x)dx =
0

∞

∫ wi f (xi
i=1

n

∑) (4.4.3)

f (x)dx =
−∞

0

∫ wi f (xi
i=1

n

∑) (4.4.4)

f (x)dx =
−∞

∞

∫ wi f (xi
i=1

n

∑) (4.4.5)

All three of these cases are handled by using the same function, however, to generate the
weights and abscissas. The function generates these values for Eq. 4.4.3 only, and the
user must multiply the abscissas by –1 to handle 4.4.4 or carry out a two part calculation
with normal and reflected abscissas to handle 4.4.5:

f (x)dx =
−∞

∞

∫ wi f (−xi
i=1

n

∑) + wi f (xi
i=1

n

∑) (4.4.6)

If it is known that the function to be integrated has inversion symmetry, then one only
needs to carry out the summation of Eq. 4.4.3 and multiply it by two. The
MathScriptor function is:

gauss_laguerre(x1(), w1(), nterms) which returns the Gauss-Laguerre abscissas
x1(1:n) and weights w1(1:n) for integration from 0 to infinity where n is used to set the
number of points. If n is less than 14, the number of points is equal to 2n such that n
=2(4), 3(8), 4(16), 5(32), 6(64), 7(128), 8(256), 9(512), 10(1024), 11(2048), 12(4096),
13(8192). If n is greater than 13 but less than 257, n sets the number of points.

We demonstrate the use of Gauss-Laguerre Quadrature to evaluate the integral:

Aa =

r1r2

2
s+ r1

2()
0

∞
∫

−(3/2)
s+ r2

2()−(1/2)
s+1()−(1/2)

ds (4.4.7)

which is an important integral in electrostatics and solvent effect theory. This integral
has no closed form solution for most values of r1 and r2, and has been the subject of
many studies due to the difficulty of solving the integral numerically. If we select r1
and r2 = 1, then this integral is known to equal 1/3 exactly. The following program
evaluates this integral:

119

and the following is the output:

Use Gauss-Laguerre Quadrature to calculate
Aa = r1*r2/2*Integral[(0, infinity)(s+r1^2) ^-(3/2)*(s+r2^2)^-(1/2) *(s+1)^-(1/2) ds]

set R1=1 and R2 = 1, then Aa = 1/3 exactly

 n = 0064 , integral = 0.33324729, error = 0.00008605
 n = 0128 , integral = 0.33330346, error = 0.00002988
 n = 0256 , integral = 0.33332170, error = 0.00001163
 n = 0512 , integral = 0.33332968, error = 0.00000366
 n = 1024 , integral = 0.33333205, error = 0.00000129
 n = 2048 , integral = 0.33333288, error = 0.00000046
 n = 4096 , integral = 0.33333317, error = 0.00000016
 n = 8192 , integral = 0.33333326, error = 0.00000007

In general, Gauss-Laguerre quadrature is rarely capable of yielding accuracy that is
comparable to that achieved by using Gauss-Legendre simply because the span of the
abscissas is so much greater. And there are many examples of functions which totally
confound the method. These include those with sharp features that occur at large x

120

values, and those that oscillate with high frequency over the entire range. It is thus a
good idea to plot portions of the function and determine whether it is well-behaved.

4.5. Arbitrary Precision Arithmetic

One of the key technological accomplishments of the past decade was the development
of methods and procedures for routinely masking sub-micron features on mass-produced
semiconductor chips. The current feature size (2014) of 20 nm allows Intel, IBM and
other CPU manufacturers to make processors that are many orders of magnitude more
powerful than those in the mainframe computers of the 1980s. A typical personal
computer now has a processor operating at 2 GHz (or more), and the processor includes
an integrated floating point unit capable of handling both single and double precision
math. The numerical routines in MathScriptor take advantage of this capability to carry
out two-dimensional Fourier transforms in milliseconds instead of the minutes that were
typical a decade ago.

The speed of double precision arithmetic and the fact that most computers have more
than a gigabyte of memory suggests that numerical calculations can now be routinely
performed in double precision (15-16 significant digits). Although double precision is
adequate for most calculations, there are times when additional precision is needed.
One such example is in the generation of the abscissas and weights for Gauss-Laguerre
quadrature (see Section 4.4.2). Any attempt to calculate more than 1024 of these values
using double precision arithmetic will generate underflow and the calculation will fail.
The coefficients generated by gauss_laguerre(x1(), w1(), nterms) for nterm values that
generate more than 256 values are calculated by using 32 significant digits of precision,
which yields about 14 significant digits of accuracy in the abscissas and weights.
Whenever a numerical calculation involves the subtraction or division of two large
numbers of comparable magnitude, the Arprec methods provided by MathScriptor may
be needed.

Arbitrary precision in MathScriptor uses strings to represent the numbers and all
arbitrary precision functions have string parameters and return strings. It is implemented
using Robert Delaney's elegant fp plugin (http://delaneyrm.com). The Arprec functions
also work on complex numbers identified by separating the real and imaginary parts
with a comma (do not explicitly include I). The following functions are Arprec savvy:
plus(s1, s2), minus(s1, s2), mult(s1, s2), div(s1, s2), real(s1), imag(s1), pow(s1, s2),
log(s1), loggamma(s1), exp(s1), abs(s1), sin(s1), asin(s1), cos(s1), acos(s1), tan(s1),
atan(s1), sinh(s1), asinh(s1), cosh(s1), acosh(s1), tanh(s1), atanh(s1). Exponents as
large as ±58, 000, 000 are allowed.

121

The first thing to do before starting any Arprec calculation is to assign the number of
digits of precision that is desired by using the method Arprec_set_precision(idigits).
The value of idigits can be any number from 8 to 2, 147, 483, 648. Although one can
change the working precision in the middle of a calculation, if the precision has been
increased, previous calculations of relevance will need to be redone. Thus, it is best to
assign the maximum precision required at the very beginning, remembering to add a few
extra digits to handle anticipated truncation error. Note that the argument, idigits, is
assigning the precision of the mantissa (also called the coefficient or significand), and
large exponents do not reduce the precision in the mantissa as is the case with some
arbitrary precision implementations.

To format Arprec numbers there are two options. A temporary result can be rounded to
lower precision by using round_to_precision(s1, ndigits). One can also format numbers
for printing by using Format(s1, nwidth, ndecimal), which also works on complex
numbers (total width=2*nwidth+3 for comma delimiter). Comparisons using Arprec
strings can be carried out using Q_greater_than(s1, s2) and Q_less_than(s1, s2), and
both functions return true if the stated comparison is true. To test for equal, one can use
s1=s2 as the conditional, but such comparisons are dangerous as the two numbers must
be identical in both value and precision for this to work. It is best to write code that
avoids an equals test. If this is impossible, then use round_to_precision() to use a lower
precision comparison for improved reliability.

Following is a list of Arprec savvy functions as well as functions that are useful for
Arprec calculations.

abs(s1) as string absolute value of x

acos(s1) as string returns arc cosine, or inverse of the cosine, of x in radians
divide acos() by const_degree to convert to degrees.

acosh(s1) as string inverse of the cosh() function

Arprec_degree as string calculates and returns radians per degree to an arbitrary
precision.

Arprec_e as string, calculates and returns e to an arbitrary precision.

Arprec_euler as string returns Euler's constant to the requested precision, or 10000
digits, whichever is smaller.

122

Arprec_factorial(n as integer) as string returns the string representation of the
factorial of n, for values of n from 0 to 8, 600, 000. This function is unique in that
previous values are cached to speed up subsequent determinations.

Arprec_pi as string calculates and returns pi to an arbitrary precision.

Arprec_precision as integer a read only integer that returns the current precision set
for the Arprec internal arithmetic. The user sets this value by executing
Arprec_set_precision(ndigits). Do not change this value- it is read only.

Arprec_random_float[(seed_string)] as string returns an arbitrary precision floating
point number between 0 and 1. An Arprec string representing a positive number
between 0 and 1 can be included to seed the generator. This seed, if used again, will
produce an identical set of pseudo-random numbers. Subsequent references should not
include any seed string, i.e. just Arprec_random_float().

Arprec_random_integer(ndigits) as string returns a random integer of length ndigits.
Make sure you set Arprec_precision() to a value larger than ndigits prior to doing math.

Arprec_set_precision(idigits) set the precision in number of digits for subsequent
arbitrary precision calculations.

Arprec_variational_min(sx(), sy(), n) as string returns the value of x for which y is a
minimum for a data set sx(1), sy(1), sx(2), sy(2) ... sx(n), sy(n) where n=3 or 4.
Precision should be set at 3 times the desired number of significant digits, and the range
of sx(1)...sx(n) decreased with each iteration. More on this function below.

asin(s1) as string returns arc sine (or inverse of the sine) of x in radians.

Note that any Arprec functions that return radians can be convert to degrees by using the
following expression:

div(asin(s1), Arprec_degree)

Similarly, when one has a string in degrees (e.g.. s1 = “45”) and wishes to convert it to
radians, one multiplies the string by Arprec_degree:

mult(s1, Arprec_degree)

asinh(s1) as string inverse of the sinh() function

atan(s1) as string returns arc tangent in radians of x

123

atanh(s1) as string inverse of the tanh() function

cos(s1) as string returns cosine of x assuming x is in radians if using degrees, multiply
by const_degree e.g. cos(mult(Arprec_degree, s1))

cosh(s1) as string returns the hyperbolic cosine.

div(s1, s2) as string s1/s2 using arbitrary precision string arithmetic.

exp(s1) as string returns e to power of x = pow(e, x) = e^x

format(s1, nwidth, ndecimal) as string returns a formatted Arprec string number of
width nwidth showing ndecimal digits to the right of the decimal point. If s1 is
complex, then both the real and imaginary components are formatted and separated by a
comma.

imag(s1) as string returns the imaginary part of an arbitrary precision complex string
number.

log(s1) as string natural log of s1 (e.g. log(exp(12))=12)

log10(s1) as string log based 10 of s1 (e.g. log10(1000)=3)

logGamma(s1) as string natural log of Gamma() for x>0. Note that n! = Gamma(n+1)
= exp(logGamma(n+1)). For example, 12! = 479, 001, 600, which equals
Exp(Gamma(12 + 1)) = 479, 001, 600. Truncation error makes this method approximate
for large n, thus 19! = 121, 645, 100, 408, 832, 000 but exp(loggamma(19 + 1)) = 121,
645, 100, 410, 059, 440.

minus(s1, s2) as string s1 - s2 using arbitrary precision string arithmetic.

mult(s1, s2) as string s1*s2 using arbitrary precision string arithmetic.

plus(s1, s2) as string add two strings using arbitrary precision string arithmetic.

pow(s1, s2) as string returns s1^s2.

primeQ(candidate_prime, ntrials) as Boolean Arprec application of the Miller-Rabin
prime number test on candidate_prime based on ntrials. False means definitely not
prime. True means prime with an error probability of (0.25^ntrials). The

124

candidate_prime integer can be either an int64 or an Arprec string with the number of
digits less than ndigits set via Arprec_set_precision(ndigits).

Q_greater_than(s1, s2) as boolean
returns true if s1>s2, where s1 and s2 are arbitrary precision string floats or integers.

Q_less_than(s1, s2) as boolean
returns true if s1<s2, where s1 and s2 are arbitrary precision string floats or integers.

real(s1) as string
returns the real part of an arbitrary precision complex string number.

round_to_precision(s1, nsd) as string Round the real number x to nsd significant
digits. This function works on Arprec strings as well as string complex numbers. In the
latter case, the real and imaginary components are returned rounded and separated by a
comma.

sin(s1) as string returns sin of x assuming x is in radians

sinh(s1) as string returns the hyperbolic sine.

tan(s1) as string returns tangent of x assuming x is in radians

tanh(s1) as string returns the hyperbolic tangent.

It is worth reminding the reader that functions like Arprec_random_float() can be
written as arprec_random_float() or Arprec_Random_Float(), and all are treated as
identical by the compiler. Capitalization is ignored.

4.5.1. Arbitrary Precision Variational Optimization

Variational optimization is based on the use of the first derivative to assign the location
of a minimum numerically. This method in a slightly different form is called Newton’s
method, but in our implementation, requires the use of high precision math to achieve a
reliable solution. The variational method is so useful in practice that it is included as an
internal Arprec method in which all of the internal math is carried out using Arprec
functions. To understand the approach, examine Fig. 4.5.1.

125

Figure 4.5.1. Example of using the first derivative zero point to assign the minimum in a function using the
function Arprec_variational_min(sx(), sy(), n).

The first step in using Arprec_variational_min is to select three points of equal
separation with the second point as close to the minimum as possible. A course search
is the best approach and when such was carried out on the function, f(x), point 2 was
found to be the minimum of the search. Points 1, 2 and 3 now represent the first three
values to be provided to Arprec_variational_min as follows:

sx(1)="0.5" , sy(1)="-0.48331905"
sx(2)="1.5" , sy(2)="-0.94145388"
sx(3)="2.5" , sy(3)= "0.65516388"
arprec_variational_min(sx(), sy(), 3) à "1.2229635"

The first iteration returns a better estimate of the minimum, and the program should then
take the minimum and add and subtract an amount that is half the separation that was
used previously. Hence, iteration two should be:

sx(1)="0.9729635" , sy(1)="-0.94330835"
sx(2)="1.2229635" , sy(2)="-0.99992874"
sx(3)="1.4729635" , sy(3)="-0.95347537"
arprec_variational_min(sx(), sy(), 3) à "1.2352933"

Note that sx(2) equals the last result returned by Arprec_variational_min. The above
example rounded all values to 8 significant digits to make it more easily followed. The
true minimum is exactly 1.2345, and with the range halved each iteration, the user can
decide when to discontinue iterations by assuming that the error is conservatively 10%
of the total range investigated. Taking the process too far can result in truncation error

126

dominating, despite the use of Arprec methods. To understand the process, and the
potential problems, we examine the internal workings of this function.

The internal workings of this function for n=3 are quite simple. The three data points,
{x1, y1}, {x2, y2} and {x3, y3} are fit to a simple polynomial a + bx + cx2 via closed
form assignment of b and c:

 b = -((sqr(x2)*y1 - sqr(x3)*y1 - sqr(x1)*y2 + sqr(x3)*y2 +sqr(x1)*y3 -

sqr(x2)*y3)/((x1 - x2)*(x1*x2 - x1*x3 - x2*x3 + sqr(x3))))

 c = -((-(x2*y1) + x3*y1 + x1*y2 - x3*y2 - x1*y3 + x2*y3)/(sqr(x1)*x2 - x1*sqr(x2)

- sqr(x1)*x3 + sqr(x2)*x3 + x1*sqr(x3) - x2*sqr(x3)))

where sqr(x) equals x^2. The basic premise of variational analysis is a recognition that
the first derivative of a function passes through 0 when the function is at a minimum
(e.g., Fig. 4.5.1). If f(x) = a + bx + cx2 then

df (x)

dx
=b+ 2cx

Setting the first derivative to zero and solving for x we get

 xmin = –b/(2c)

which represents the abscissa at which the function has reached a minimum. This is the
value returned by Arprec_variational_min. Although the math does not require that
the function be analyzed at fixed Δx [i.e. (x2-x1) = (x3-x2)], truncation error is reduced
when such is the case. Furthermore, best results are obtained when x2 approaches or
equals the actual function minimum. Hence, as previously stated, the next iteration
should be carried out by setting x2 to the previous variational min.

 Arprec_variational_min also allows for the use of four point variational
minimization which involves the closed form analysis of a + bx + cx2 + dx3. This
option is selected by setting the third parameter to 4, instead of 3. The assumption that a
four-point analysis is always better than a three-point analysis is not true unless the
function that is being analyzed has higher order terms. A four point fit requires that
each iteration have values assigned with equal Δx values with the most recent minimum
bounded by x2 and x3. The use of a three-parameter fit is faster and is preferred under a
majority of circumstances.

127

4.6. Plotting Numerical Data

There are a variety of plotting functions available to handle scientific and engineering
data. The following list provides an overview of these functions. Additional details
may be found in Appendix 1.

plot_data(x(), y(), npoints, x1, x2, y1, y2, xlabel, ylabel, gridlevel)
plot x(1..npoints), y(1..npoints) using a standard plot format. This function must be
called prior to plot_more_data or plot_data_point. The axes and labels are black.
Adjust the plot color using graphics_forecolor(0, color) and the stroke width of the
plotted line by using graphics_stroke_width(0, iwidth).

plot_data_point(x, y, s0, ilocation, symbol_type, symbol_size, symbol_color)
plot single data point at position x, y. The size in pixels is controlled using symbol_size
and the color is set using symbol_color. You can label each data point using the string
s0 and the ilocation integer symbol 1(upper left), 2(above), 3 (upper right)4 (at left), 5
on top, 6 (at right) 7 (lower left), 8 below, 9 (lower right). The font name and font size
are specified by graphics_font. Each data point is plotted using one of 12 symbol_types
[symbol_type=1 (square solid), 2 (triangle down solid), 3 (circle solid), 4 (triangle up
solid), 5 (square open), 6 (triangle down open), 7 (circle open), 8 (triangle up open), 9
(square open thick), 10 (triangle down open thick), 11 (circle open thick), 12 (triangle
up open thick)].

plot_data_points(x(), y(), npoints, symbol_type, symbol_size, symbol_color)
plot individual data points x(1..npoints), y(1..npoints). Each data point is plotted using
one of 12 symbol_types [symbol_type=1 (square solid), 2 (triangle down solid), 3
(circle solid), 4 (triangle up solid), 5 (square open), 6 (triangle down open), 7 (circle
open), 8 (triangle up open), 9 (square open thick), 10 (triangle down open thick), 11
(circle open thick), 12 (triangle up open thick)].

128

Figure 4.6.1. Sample output from the template_plot_data_points program, which illustrates the use of the
plot_data_points() function. This function provides 12 different symbols as shown in the insert, and when
this program is run, it allows the user to select the symbols using the arrow keys.

plot_data_points_with_errors(x(), y(), yerror(), npoints, symbol_type, symbol_size,
symbol_color, error_bar_type) This method will plot data points including a vertical
error bar. All parameters defined as in plot_data_points except yerror(1..npoints) gives
the total length of the errorbar in units of y, and error_bar_type specifies the type of
error bar (0=single line, >0=width of horizontal lines at top and bottom of error bar in
pixels).

129

Figure 4.6.2. Example of using plot_data_points_with_errors() to include error bars in the plot. The
height of the error bars are equal to the values provided by the parameter array, yerror(1..npoints).

plot_fontname = system_fontname_label or
plot_fontname = name of any font in the font folder on your computer

call one of the above statements prior to calling plot_data to set font for use in the plot.

plot_histogram(harray(), icolor(), nh, dfwhm, barwidth, xp1, xp2 [, region_colors()])
generate and plot a histogram of the data in harray(1..np) using the integer array
icolor(1..nh) to designate the color to be assigned to each individual point in harray().
The maximum number of different values is 32, but numbers less than 12 work best for
clarity. The sampling width is given by dfwhm, and a barwidth of dfwhm/3 is nominal.
The plot is from xp1 to xp2. Set both to zero if you wish the program to select the
range. The optional parameter, region_colors(), is a byref array, redimmed
automatically, which returns the region colors corresponding to the integer values in
carray(). The requirements of doing bit-level manipulations in this function requires
that it create its own buffer of size 3000 x 2000 and to set plot_fontsize=32. If one
chooses to add an x axis label using draw_string(), this buffer size should be kept in
mind and plot_set_options() used to shift the x axis up to make room.

Histograms are a special type of graphic presentation which provide information on
distributions or sets of data for which there are numerous observations with the same or
similar values and which may come from different sources. The version supported here
plots the number of observations in the Y axis and the values along the X axis. The

130

values are passed to the function in harray(1…nh) and the sources (represented by
colors, as many as 16) are indicated by integer (1..16) in icolor(1..nh). It is best to keep
the number of colors (sources) to 8 or less so that the colors can be distinguished by the
viewer. It is very important to keep in mind that this function is unique in that it creates
its own buffer of size 3000x2000.

 Consider a basketball team with 8 players. Each player is told to make as many
free throws in a row as possible. The players continue until 512 sets are collected. The
program below generates the histogram that follows:

131

Note that each vertical bar represents an x range of two so that the first vertical bar
represents all players who sunk 0 or 1 baskets in a row; the second bar represents all the
players who sunk 2 or 3, and so on. The last bar represents the rare case of a player
singing 46 or 47, and the color indicates that it was player 4. If the variable dfwhm in
the above program were changed to 2, then each of the vertical bars would mark a single
value, and provide greater resolution at the expense of readability (too many bars).
An example of a different data set presented using dfwhm=2 is shown in the histogram
below:

It is a subjective matter regarding the choice for dfwhm. In general this variable
generates histogram slots which are half the size of dfwhm, but the program will
mediate the analysis so this rule is not reliable for all data sets. The programmer is
responsible for adding the x-axis label, which is optional. The programmer is also
responsible for inserting the legend, when there is sufficient space within the plot.
When a legend is desired, the plot_histogram() call should include the optional color
array as the last parameter. This array will return the colors that are displayed to
coincide numerically with the integers passed in carray(1..nh). Thus, hcolor(3) is the
color representing all instances of carray() equal to 3.

132

Histograms provide an excellent method of presenting complex data sets
involving multiple sources of identical measurements. The alternative is a table, which
is much more difficult to appreciate without careful study.

The following three methods provide additional options for adding plots to a

previous figure, adjusting the labels or the tick marks. Plot_set_options and
plot_set_ticks must be called prior to executing plot_data.

plot_more_data(x1(), y1(), npoints, line_thickness, line_color)
plots x1(1..npoints), y1(1..npoints) in graph previously created by calling plot_data

plot_set_options(nx_axis_shift, ny_axis_shift)
Inserts additional space between the axes and the labels when positive values are used.
Negative values decrease the space between the numerical and text data. Set all values
to 0 to return control of the plot spacing control to MathScriptor.

plot_set_ticks(xsmall, xbig, ysmall, ybig)
when executed prior to a plot_data statement, manually sets the major (xbig, ybig) and
minor (xsmall, ysmall) tick separations. If the values are all integers, and the
subsequent plot ranges are integers, then ticks are assigned using modular arithmetic. If
the values are real, the ticks are separated from x1 and y1, and for this reason, x1 and y1
must be assigned on a major tick mark for aesthetic reasons. If the user wants to return
to automatic tick assignment, execute plot_set_ticks(0, 0, 0, 0) and the internal plot
methods will auto-assign ticks as best they can.

133

4.7. Fourier Series and Fourier Transforms

A function of t, f(t), where t is measured from –1 to 1 radians can be represented exactly
by the Fourier series:

f (t) = 1

2
a0 + an cos(nt)+bn sin(nt)⎡⎣ ⎤⎦

n=1

∞

∑ (4.7.1)

where the weighting functions, an and bn are given by the equations:

an =

1
π

f (t)cos(nt)dt
−π

π∫ (4.7.2)

bn =

1
π

f (t)sin(nt)dt
−π

π∫ (4.7.3)

In practice, a Fourier series is truncated after a certain number of terms to make the
summation computationally tractable. Thus, a Fourier series rarely reproduces the
function rigorously, but the feature that makes this process so useful is that the a and b
coefficients can be calculated readily using methods that have been developed to make
the computational effort highly efficient. The process is known as the Fast Fourier
Transform and it is implemented within MathScriptor using the following methods:

FFT1(a1(), c1(), s1(), n) one-dimensional fast Fourier transform of the linear array

a1(0….n) placing cosines into c1(0..n) and sines into s1(0..n)
FFT1_inverse(a1(), c1(), s1(), n) inverse 1D fast Fourier transform. Takes the cosine

c1(0..n) and sine s1(0..n) arrays and returns the inverse transform in a1()
FFT2(a2(), c2(), s2(), n) two-dimensional fast Fourier transform of the two-dimensional

array a2(0….n, 0...n) placing cosines into c2(0….n, 0...n) and sines into
s2(0….n, 0...n)

FFT2_complex_association(c2a(), s2a(), c2b(), s2b(), n) as double returns the complex
association between a pair of transforms of the same size (n by n).

FFT2_inverse(a2(), c2(), s2(), n) inverse 2D fast Fourier transform

where we use the arrays a1() and a2() to represent the one or two-dimensional functions
to be transformed and the cosine terms (Eq. 4.7.2) are in c1() or c2() and the sine terms
(Eq. 4.7.3) are in s1() or s2(). All the Fast Fourier Transform (FFT) methods require
that n, the number of points, be a multiple of 2 (i.e. equal to 2^k, where k is an integer).
Valid values of n are 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536,
131072, 262144, 524288 or higher. The coefficients are stored in a folded format so
that the lowest frequencies are on the "edges" and the highest frequencies are in the
middle. The 0th element is the offset, or frequency=0, component. The FT_linearize

134

statement is available to translate the coefficients to more manageable form where the
0th to highest frequency components are stored from low to high in subscript. These
can be refolded by using FT_fold.

FT_fold(c1(), s1(), c1lin(), s1lin(), npoints) transform the linearized coefficients in

c1lin(1..npoints) and s1lin(1..npoints) into a folded pair in c1(1..npoints) and
s1(1..npoints). When folded, the lowest frequencies are at 1 and npoints and the
highest frequency is in the middle (npoints/2). The zeroth frequency
components are transferred such that s1lin(0)=s1(0) and c1lin(0)=c1(0).

FT_linearize(c1(), s1(), c1lin(), s1lin(), npoints) transform the folded Fourier

coefficients in c1(1..npoints) and s1(1..npoints) into a linearized pair in
c1lin(1..npoints) and s1lin(1..npoints). When linearized, the frequency increases
linearly from low subscript to high subscript. The zeroth frequency components
are transferred such that s1(0)=s1lin(0) and c1(0)=c1lin(0).

Fourier transforms are often discussed in terms of real and imaginary components
because of the following relationships:

f (t) = cn exp(−i nt)⎡⎣ ⎤⎦

n=−∞

∞

∑ (4.7.4)

where

cn =

1
2π

f (t) exp(−i nt) dt
−π

π∫ = 1
2

an − ibn() (4.7.5)

To better understand why these two forms are identical, we recall the following three
equations from the Math review of Appendix 4.

 aeib = a cos b + ia sin b (A4.2.12)

 Re(aeib) = a cos b (real part) (A4.2.13)

 Im(aeib) = a sin b (imaginary part) (A4.2.14)

If the reader is not familiar with complex numbers, a review of the relationships in
Appendix 4 is recommended. For the purposes of the present discussion, however, one
can operate with the more conventional forms of the equations shown in 4.7.1 - 4.7.3
without formally dealing with complex numbers at all. Furthermore, if the function is
symmetric so that

f(t) = f(-t)

135

then the Fourier series representing this function will only have cosine (real)
components.

4.7.1. Fourier Analysis of Infrared Absorption

As a scientifically interesting demonstration of one-dimensional Fourier analysis, we
examine the classical treatment of infrared absorption of light by a molecule. This
process is associated with the interaction of the electromagnetic field of the

α ω()= 4πω tanh(βω / 2)

3c n(ω)V
M(t)•M(0) e−iωtdt

−∞

∞
∫ (4.7.6)

where α ω() is the absorption coefficient per unit path length, the homogeneous sample
occupies the volume V, n(ω) is the frequency dependent refractive index, the frequency
of the light that is absorbed is related to the angular frequency by the relationship (
 ω=2πv), M(0) is the dipole moment on average and M(t) is the dipole moment as a
function of time. Applying Euler's formula (see Eq. A4.2.9)

 e

−iωt =cos(ωt)− isin(ωt) (4.7.7)

and rewriting the Fourier Transform of the function F, in terms of the integral over time,
we get

α ' ω()= ω

n(ω)
M(t)•M(0) e−iωtdt

−∞

∞
∫ = ω

n(ω)
F M(t)•M(0){ } (4.7.8)

where

α ' ω() is the relative absorptivity. Thus, the Fourier transform of the dipole

moment as a function of time will yield the absorption spectrum. In specific,

α ' ωk()= ωk

n(ωk)
ak + ibk (4.7.9)

where ak is the kth cosine term and bk is the kth sine term from a Fourier transform of
the dipole moment vector with time where ωk is the angular frequency associated with
the kth term. This value is a function of the separation of the measurements. An
example of this type of analysis is shown in Fig. 4.7.1.

136

Figure 4.7.0. Example of using Fourier analysis to convert a time resolved dipole moment into a
vibrational spectrum. The dipole moment is calculated for bacteriorhodopsin and was calculated
using molecular dynamics and the Charmm force field.

4.7.2. Apodization

The Fourier coefficients, when plotted in the linear fashion shown in Fig. 4.7.0,
represent components of the spectrum that increase in frequency as one goes from left to
right (low number to high number). A significant advantage of working in Fourier
space is that one can preferentially adjust the intensity of the components by reference
to the frequency, which is linearly proportional to the coefficient number (if the
coefficients have been ordered from low to high frequency). The process of
manipulating the intensities of the Fourier coefficients is called apodization, which is a
general term used for changing the shape of a mathematical function. One generic type
of apodization is

apod(i)= (n− i)

n

⎛

⎝
⎜

⎞

⎠
⎟
k

 (4.7.10)

where n is the number of coefficients, i is the coefficient number, and the level of
apodization is given by the integer k , where the larger the value, the more rapid is the
cut-off of the higher frequencies. The effects of apodization are explored in Fig. 4.7.1.

137

Figure 4.7.1. Example of low-pass apodization of the Fourier transform on the spectrum shown
at upper left. Upon the inverse Fourier transform of the apodized coefficients, the spectrum at
upper right is generated. The apodization function is the smooth curved line shown in the two
panels at the bottom, and the Fourier coefficients are plotted post apodization. The apodization
function is shown in Eq. 4.7.10 and is based on the assignment of k=20.

The above example of apodization is analogous to using a low-pass filter on a periodic
function or signal. One can also use apodization to selectively enhance high frequency
components. Such will increase the intensity of narrow bands but at the expense of
enhancing noise, which is usually high frequency as well.

4.7.3. Fourier Self-Deconvolution

Narrowing a spectral line in the frequency (ω) domain is equivalent to stretching the
corresponding signal in the time (t) domain, so that it does not decay as quickly. For
example, a cosine wave that oscillates continuously in the time domain will generate an
infinitely sharp spectral feature in the frequency domain. Conversely, if the cosine
wave is apodized to generate a faster decay, the spectral feature broadens (see Fig.
4.7.3). Fourier-self-deconvolution (FSD) is in effect a reversal of the apodization
process depicted in Fig. 4.7.3.

138

Figure 4.7.2. A very sharp spectral line (upper left), when Fourier transformed, generates a
cosine wave that decays very slowly (lower left). If the line were infinitely sharp (a delta
function), the cosine wave would be continuous without decay. If the cosine wave is apodized
(lower right), the spectral feature broadens in proportion to the extent of apodization. Fourier-
self-deconvolution represents a mathematical reversal of this process.

Standard implementation of FSD is based on the following algorithm:

1. The spectrum in frequency space is reflected about the origin to produce a

symmetric version. This reflection doubles the amount of data to transform, but by
making the spectrum symmetric, the Fourier-transform is real (no sin()
components).

2. The Fourier transform is divided by the Fourier transform of the line shape function

centered at the origin. This process is equivalent to deconvolving the spectrum by
the line shape of the spectrum. The line shape function must have an integral of
unity so that the oscillator strengths of the individual bands remain invariant to
deconvolution. Thus, as the bands become sharper, their intensities will increase to
maintain the same integral.

3. The resulting time domain signal is smoothed by using an apodization function that

optimizes the line shape and prevents the creation of spurious features. Selection of
the apodization is equally important to the selection of the line shape function.

139

An example of using FSD on two
overlapping Lorentzians is shown at
right. The original spectrum was
generated using two Lorentzians at
190 and 200 cm-1 with full-widths at
half-maxima of 5 cm-1. This spectrum
was then deconvolved by using a
Lorentzian line shape with a FWHM
of 3.5 cm-1, a value which produced
the optimal result. In principle, a
value of 5.0 cm-1 would be the
optimal choice, but in practice one
must balance the choice with the apodization that is used to remove the noise. In this
case, no apodization (smoothing) was used, and spurious features are observed on either
side of the line shape. This signal had no noise.

This process can also be done using complex FSD, which is expedient in MathScriptor
because of the optimized FFT methods. A simple program that carries out Fourier-
Complex-Self-Deconvolution with apodization is shown below. Two types of line
shape functions are demonstrated in this program. The first is an exponential function:

Gd (i)= exp −i kd / n() (4.7.11)

where i is the coefficient of the transform set, n is the total number of coefficients and kd
is the deconvolution line-shape factor. The larger the value of kd, the more narrow line-
shape. The function in Eq. 4.7.11 is appropriate for either a Lorentzian or Gaussian line
shape. The (artificial) alternative is the use of a quadratic decay function:

Ld (i)=
2nkd

2 i kd + n()2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ (4.7.12)

where i is the coefficient of the transform set and kd is the deconvolution line-shape
factor, where large values are associated with a more narrow line-shape. It is rare for
the optimal values of kd in Eqs. 4.7.11 and 4.7.12 to be the same. Furthermore, the
optimal line shape function is strongly coupled to the apodization which means both
must be optimized simultaneously. The deconvolution is carried as follows:

ci

new =ci
old exp

i kd

n

⎛

⎝
⎜

⎞

⎠
⎟× (n− i)

n

⎛

⎝
⎜

⎞

⎠
⎟
ka

and si
new =si

old exp
i kd

n

⎛

⎝
⎜

⎞

⎠
⎟× (n− i)

n

⎛

⎝
⎜

⎞

⎠
⎟
ka

 (4.7.13)

140

where ci are the real (cosine) terms
and si are the imaginary (sine) terms.
The new Fourier coefficients are then
inverse Fourier transformed to
generate the resolution-enhanced
Fourier-self-deconvoluted spectrum.
There are analogous expressions for

 Ld (i) . A program that demonstrates
complex FSD is shown at right. The
program first generates a sample
spectrum in the array y(1..npoints)
consisting of three Lorentzians
centered at 95, 105 and 115
wavenumbers. These bands are
overlapping, and the goal of FSD is to
sharpen these bands so that they are
differentiated. This program
demonstrates both Gaussian and
Lorentzian deconvolution as well as
the presence or absence of noise. The
user must select Gaussian and Noise
options at the top of the program
using the two Booleans provided. The
inherent sharpness of the
deconvoluted line shape and the
degree of apodization is set by
entering two integers separated by a
comma in the input field. Trial and
error is required, and increasing the
first parameter increases resolution,
but also noise, and the second
parameter adjusts the rate of
apodization. As this rate increases,
noise is diminished at the expense of
resolution. Simultaneous
optimization of both parameters is
required to achieve optimal resolution
enhancement. Because enhancement
of resolution invariable enhances

141

noise, trial and error is the best approach. The following figures provide insight into the
process as well as the problems associated with noise.

Figure 4.7.3. Fourier-Complex-Self-Deconvolution using the lineshape function of Eq. 4.7.11
and the apodization function of Eq. 4.7.10. The combined function is shown in the insert in the
lower right panel. The original spectrum and its Fourier transform is shown in the two left
panels, the deconvolved coefficients are plotted in the lower right panel and the resulting
spectrum generated by inverse Fourier transformation is shown in the upper right panel. The
features near 0 wavenumber are edge noise artifacts associated with slight over convolution.
These spurious features are a common consequence of CFSD and provided they are outside
the region of interest, of no concern.

As can be seen by examination of Fig. 4.7.3, the deconvolution process essentially
dampens (prolongs) the decay of the oscillations in Fourier space. This process is to a
first approximation the reverse of the apodization process shown in 4.7.2. Given that,
one questions why it is necessary to use both a deconvolution and an apodization in the
treatment. If no apodization is carried out, the line shape function which appears in the
denominator starts to approach zero fairly quickly for narrow lines. The apodization
clamps the Fourier coefficients to prevent spurious features of the type observed at low
wavenumber in the upper right panel of Fig. 4.7.3. The best results are obtained when
the line shape function and the apodization function are carefully balanced.
The example shown in Fig. 4.7.4 is an example of using a quadratic decay (Eq. 4.7.12)
to represent the line-shape function. This function is not as realistic as the exponential
decay (Eq. 4.7.11), but is better behaved when noise is present (see below).

142

Figure 4.7.4. Fourier-Complex-Self-Deconvolution using the lineshape function of Eq. 4.7.12
and the apodization function of Eq. 4.7.10. Other details as in Fig. 4.7.3.

Figure 4.7.5. The effect of noise and lineshape function on Fourier-Complex-Self-
Deconvolution of the spectrum shown in Figure 4.7.4. The noise level was one-tenth of the
noise present at upper right.

143

The FCSDs shown in Fig. 4.7.5 provide a perspective on how the two lineshape
functions behave when there is noise present. The exponential function has the
advantage of providing a realistic representation of a true lineshape, whether Lorentzian
or Gaussian. This observation is a source of confusion for students, so it is important to
recognize that the Fourier transform of symmetric band, whether Lorentzian or Gaussian
in shape, is an exponential function. Thus, Eq. 4.7.11 is invariably the best choice if
one is dealing with a pure lineshape. However, the quadratic function shown in Eq.
4.7.12 is preferable if significant noise is present because it distributes the noise more
evenly and provides some fortuitous cancellation of the noise. This observation is
demonstrated by comparing the performance of these two functions when there is
modest noise present in the spectrum (Fig. 4.7.5). The exponential function enhances
the noise in frequency regions well below where the original noise was present. In
contrast, the quadratic function tends to keep the frequency of the noise background
closer to the original, and while it is enhanced, the enhancement is only about 60% of
that observed for the exponential function. Thus, the quadratic function, while
artificial, is a better choice when there is a great deal of noise present.

4.8. Maximum Entropy and Linear Prediction

We explore in this section one of the more interesting numerical methods known as
maximum entropy. This concept is based on the premise the in both thermodynamics
and in predicting events based on probability, the systems under study will naturally
seek a state of maximum entropy. Indeed, the first implementations of this concept
were made by E.T. Jaynes in 1957 by demonstrating that the concept of entropy in
thermodynamics can be generalized to information theory. One important application of
maximum entropy is in the prediction of future events based on a set of measurements
of the process. In that regard, it is important to recognize that the principle of maximum
entropy requires prior information to make useful predictions. This principle has had a
profound impact on the mathematical technique called linear prediction.

Linear prediction is the process of predicting future values of a time-dependent signal as
a linear function of previous samples of the signal:

p n()= ai

i=1

m

∑ p n − i() + xn (4.8.1)

where p(n-i) is the value of the periodic function at point n-i, p(n) is the extrapolated
value of the function at point n, ai is the ith linear prediction coefficient and xn is the
discrepancy between the actual value and the extrapolated value at point n. Linear
prediction as implemented in MathScriptor requires that the periodic function, p, be
measured at equidistant points in time.

144

Maximum entropy turns out to be the
most reliable method of calculating the
linear prediction coefficients provided
the data to be extrapolated has adequate
length and has been sampled to avoid
aliasing. The methods and procedures
are based on a coupling of Levinson-
Durbin recursion methods with Burg's
maximum entropy formula. A detailed
discussion of these methods is beyond
the scope of this book, and the
interested reader is referred to chapter
13 of Ref. 4 for an excellent discussion.
Our goal in this book is to explain how
to use these methods. And there are
many uses of these formulas which are
interesting and, in some cases,
financially viable.

4.8.1. Maximum Entropy and the
Stock Market.

There are two ways of investing money in the Stock Market. One method is to actually
know what you are doing, analyze the financial and strategic characteristics of the
company involved, and purchase the stock based on sound economic principles. This
approach is to be recommended, but it doesn't always work because there are too many
variables outside of the control of the company and the investor. An alternative method
is to use linear prediction and maximum entropy to predict where the stock is headed
and make decisions based on these predictions. The reader may be surprised to learn
that virtually all investment firms use this method as well, particularly to make short
term decisions. I discovered this fact from a former graduate student, who after
obtaining a Ph.D. in theoretical chemistry decided that predicting stock market trends
was more rewarding (financially) than predicting how electrons respond to
electromagnetic radiation inside a molecule. This young scientist is now writing
maximum entropy linear prediction algorithms to predict stock trends and programming
a computer to make buy/sell decisions within seconds when a reliable trend is
discovered.

Let us now explore how this might be done using the internal methods in MathScriptor.
The relevant portion of the program is shown above, and the application to an analysis
of the stock of General Electric Corporation is shown in Fig. 4.8.1. The routine is fully
commented and is mostly self-explanatory. The basic idea is that 23 days of stock

145

prices are fed into the numerical_maxent_lpc() method to generate a set of linear
prediction coefficients using Levinson-Durbin recursion and Burg's maximum entropy
approach. The method returns not only the coefficients but also the root-mean-square
error associated with the linear prediction, xms. Following this analysis, the
coefficients are used to make a prediction for the next days stock. If the stock is
predicted to go up, the stock is held (not sold). However, if the stock is predicted to go
down, the stock is sold immediately and then bought at the end of the next day. This is
done whether or not the stock actually went up or not. The only additional feature of the
method is to use the mean-square error, xms, to determine whether the linear prediction
algorithm has established a reliable set of coefficients. If not, then the stock is not sold
regardless of the prediction, which reflects the assumption that when in doubt, revert to
the long term investment strategy.

Figure 4.8.1. Comparison of profits made by two investors. One uses linear-prediction
maximum entropy to make buy-sell decisions (top curve) and the second buys the stock on day
1 and keeps it for the full 8500 days (bottom curve). The middle curve shows the actual stock
price. Note that the value of the stock and the investment income has been scaled to 1982
dollars, and is plotted for a single share.

Although the analysis shown in Fig. 4.8.1. suggests that one would do well to use
maximum entropy linear prediction to make buy/sell decisions in the stock market, the
simulation assumed that there were no brokerage fees involved in the numerous buy-sell
decisions made during the course of this simulation. If realistic brokerage fees were
included in this simulation, the maxent-LP investment strategy would not beat the long-
term strategy of simply holding on to the stock. During the early stages, the maxent-LP
method did extremely well, but then failed during the latter portion of the simulation to
hold on to the gains. The reason for this particular failure is unknown, but is typical of

146

maxent-LP investment strategies. Sometimes they work really well and sometimes
they work very poorly. The use of the mean-square error to predict when failure is
likely helps significantly, but is unable to provide a-priori prediction of abrupt external
events which impact the stock price.

Thus, our simple program should not be used to make investment decisions. If one is
serious about doing this, one must use maxent-LP methods to follow multiple
interrelated variables relevant to the stock. The professional programs that have been
developed by the investment firms will typically monitor thousands of stocks as well as
other variables simultaneously and use these trends to make correlated decisions. Not
surprisingly, none of these investment firms make their programs public, which
precludes further discussion.

4.8.2. Maximum Entropy Linear Prediction Resolution Enhancement.

We return to the use of Fourier-Complex-Self-Deconvolution and demonstrate that the
combination of FCSD with maxent-LP provides an optimal method of increasing the
resolution of a spectrum. The best-known example of this method is called LOMEP,
which stands for Line Shape Optimized Maximum Entropy Linear Prediction [J. K.
Kauppinen, D. J. Moffatt, M. R. Hollberg, and H. H. Mantsch, "Characteristics of the
LOMEP Line-Narrowing
Method, " Appl. Spectrosc. 45,
1516-1521 (1991)]. The
approach we demonstrate here is
a simplified version, but it
maintains the key elements of
the LOMEP method.

The first step is to carry out
FCSD using the methods
described in section 4.7.3. The
second step is to use maxent-LP
to expand the Fourier series
thereby enhancing the resolution
(see program insert). Recall that the sharper the spectral line, the slower is the decay of
the cosine wave associated with the spectral feature (see Fig. 4.7.2). In the LOMEP
method, and the adaptation explored here, maxent-LP is used to extrapolate the Fourier
series to longer time thereby decreasing the line-widths of the constituents features.

147

Figure 4.8.2. Lineshape narrowing by using maxent-LP to extrapolate and amplify the FCSD
results based on the use of an exponential line-shape function (Eq. 4.7.11). The top set of four
graphs show enhancement of the FCSD results shown in Fig. 4.7.3. The bottom set of four
graphs show enhancement of the FCSD results shown in Fig. 4.7.5, which include a small
amount of noise in the original spectrum. Note that maxent-LP does an excellent job of handling
noise.

148

References for Chapter 4

1. A First Course in Numerical Analysis, Anthony Ralston and Philip Rabinowitz.
Dover (2001). ISBN: 978-0486414546

2. Numerical Methods for Scientists and Engineers, R. W. Hamming. Dover
Publications (1973, 2nd Edition, 1987). ISBN: 978-0486652412

3. Numerical Methods for Engineers and Scientists, Joe D. Hoffman. CRC Press
(2001) ISBN: 978-0824704438

4. Fourier Transforms in Spectroscopy, J. Kauppinen and J. Partanen, Wiley VCH
(2001). ISBN: 978-3527402892

149

Chapter 5
Classes

This chapter investigates classes, which are powerful objects that allow the programmer
to expand or customize the capabilities of the extended basic language. Classes were
briefly introduced in Section 2.9.1, and the purpose of this chapter is to revisit this topic
in sufficient detail to permit the reader to write classes that are useful, powerful and
encapsulated.

Classes are available in all modern object oriented languages, and the most common use
of classes is to create new types of variables and establish the methods and attributes for
manipulating those variables. Indeed, all variable types are represented by classes, and
if you type in a declaration such as the following:

dim fubar as boolaboolean

that makes reference to an unsupported variable type, many compilers display the
following error: There is no class with this name. Some of the more modern compilers
use a less obtuse error statement such as: Can’t find a type with this name. Regardless of
the error message, the key point is that each variable type is represented by a class
which provides not only the types of variables available, but the rules necessary to
manipulate those variables.

A class can be defined to do just about any task that is needed. Because a class can
fundamentally alter or extend a language, classes represent the highest objects in the
object oriented programming family. Professional programmers spend a majority of
their time writing or modifying classes, because classes (when properly written) are
fully encapsulated and independent of the other objects in a program. Thus, a
programmer can use a class written by another competent programmer with confidence
that it will not interfere with other objects within their program. The structure of
classes is designed to guarantee that classes are encapsulated, but there are ways a
programmer can write a class improperly so that it leaks or manipulates objects outside
of its domain. This chapter seeks to not only explain how to create and optimize
classes, but also what problems to avoid when writing a new class.

5.1. The Class Structure

Classes are identified by using the “class classname” statement and the end of the class
is identified with the “end class” statement. Each class can have constructor and
destructor subroutines which serve to initialize or close down the class. The best
approach to understanding classes is to explore examples. The first example is a circle
class which does nothing more than return the area and circumference of a circle (see

150

below). Each class must have a unique name that is used by the program. One or more
variables can be assigned to represent the class by using a declaration statement such as:

dim c1, c2 as circle

which indicates that these variables can be used in the program to represent the class.
But these variables cannot be used until they are instantiated, a process that is unique to
classes and has the appearance of a standard assignment statement. For example, to
instantiate the variable c1 to hold the circle class use:
c1 = new circle(3)
This statement carries out the
following two processes. First, it
associates the variable c1 as a holder
of the class called circle and copies
the entire class into this variable,
including all of the class variables.
Second, it fires the constructor. If
there are multiple constructors, one is
selected based on the arguments.
There are two constructors in this
class. One does not have any
parameters and the second has a
single parameter. The above
instantiation seeks a constructor that
can use the parameter 3, so it selects
the second of the two constructors.
When executed, this constructor takes
the parameter rad, which now equals
3, and executes the statement
radius=rad. Now the private variable
radius is assigned the variable rad
(which is in this case 3). There is a natural inclination to write the constructor in a more
simple form such as sub constructor(radius as double) in the hopes that upon
instantiation the passed variable will go directly into the class variable of the same name
declared at the top. This does not work because the two variables are different. One is
local to the constructor and the other is global to the entire class. The local assignment
takes precedent, and the global class variable never gets assigned at all. Thus, you need
to pass the parameter into a local variable that is subsequently assigned to the global
variable. An alternative is to instantiate without assignment by executing the statement,

c2 = new circle()

151

Now the variable c2 is associated with a new copy of the class, but the radius is
undefined. We include a string called status which is set equal to “undefined” to allow
the user to monitor the status and could be used within the class to alert the user not to
trust the area or circumference yet. No need because the radius is assigned to be zero
when the class is instantiated automatically, so in fact, the status variable is really not
needed in this case. It is included for demonstration purposes. But now the question is,
how do we assign the radius to the class variable c2? A subroutine called
assign_radius has been included to do this assignment:

c2.assign_radius=1.2345678

This works just fine, but there is an even simpler mechanism available. This subroutine
is not needed at all because we can access any of the class variables declared at the top
of the class by using the dot extension method. Thus, to assign the radius to c2 we
execute:

c2.radius=1.2345678

and the same goal is accomplished directly. However, we need to know that this
variable is available, which is why many classes are written using subroutines to make
all variable assignments. Indeed, if one is concerned that a user will mangle a class
variable by accident or due to some personality disorder, one has the option to make all
class variables private as follows:

private dim radius as double
private dim status as string

Private variables are not available outside of the class and are fully protected. The use
of private class variables allows an additional level of encapsulation. But if one is
writing classes for a larger project where others are making use of it, it is more common
to keep many of the class variables public because the only way they can be interrogated
or modified is via extension such as c1.radius or c2.radius, etc. Note also that because
the entire class along with its variables are copied into the c1 and c2, c1.radius is not
equal to c2.radius. They are independent variables stored in different locations in
memory.

The area and circumference data are available by executing c1.area, c1.circumference,
c2.area, and c2.circumference. While it might appear to the program that these are
variables, in this case we are executing a method within the class. Both variables and
methods can be made private. If we had assigned the function area to be private:

private function area() as double

152

then the statement c1.area would have generated the following error:

Err(54) = This method is protected. It can only be called from within its class.

The programmer can help make a class more fully encapsulated by making all functions
not intended to be accessed out side the class private.

We close this example by examining the destructors, which are subroutines that fire
when the class goes out of scope, and is no longer available to any program element.
Destructors must be subroutines because no value can be returned and destructors can
accept no arguments. The primary use of destructors historically was to release the
memory which was allocated for scratch space by the class. Modern memory
management has largely made this process unnecessary, but destructors still have their
use. For example, versions of mathscriptor above 2.0 include functions for interfacing
with phidgets, which are electronic boards which connect to the computer via usb and
which can monitor voltages and control servos, stepper motors, relays, LEDs and many
other devices. Classes can be written that control the
phidgets and automatically go out of scope when the
process, which can be carried out independent of the
program, is complete. The class can then alert the
program by setting a global variable that the process
is done. A destructor can also be used for classes
that are operating within separate threads to alert the
calling program that the thread process is complete.
Students rarely need to use destructors, and their
inclusion within a class is optional.

5.2. Class Inheritance

One of the important attributes of modern object
oriented languages is inheritance based on class
hierarchy. In general, objects inherit the properties,
methods and events of the superclass upon which
they are based. A simple example is that functions
and subroutines inherit all of the properties that were
declared in the Main Program. In contrast, the Main
Program does not have access to the properties
declared inside a function or subroutine because the
Main Program has a higher position in the object
oriented hierarchy than the functions and subroutines
that serve it.

153

A class inherits the properties of another class by using the inherits keyword as shown
in the example at right. By default, all classes that you write are given an equal status
in the object hierarchy until an inherits keyword is found, and then that keyword serves
to designate the target as the superclass for that
pair of objects. In the example at right, the
class square adds a new constructor, takes
advantage of all the methods and properties of
the parent class geometric_object.

5.3. Creating New Variables Using Classes

One of the most powerful uses of classes is to
create new variables and define the
mathematical functions that operate on the new
variables. MathScriptor provides a majority of
the variable types that are needed to do object
oriented scientific programming. However,
MathScriptor does lack a double precision
complex variable which forces programmers
who need to use complex numbers to work
with string complex numbers via the Arprec
classes (see section 2.8.1). For most
applications, Arprec string complex numbers
serve the purpose. But for more extensive
complex work where speed is more important
than access to high precision arithmetic, the
class that we introduce in this section is to be
preferred. The primary goal of this section,
however, is to introduce the methods and
procedures of using classes to create new
variables. Thus, our initial discussion will
concentrate on the programming aspects
rather than the mathematical procedures. We
will follow with a detailed discussion of the
ancillary functions that are needed to make
the class complete.

Complex numbers consist of a real and an
imaginary part. Thus, a double precision
complex number requires twice as much
storage as a double precision real number.

154

The class shown at right implements a complex number as a pair of double precision
variables, one assigned to the real part and the second assigned to the imaginary part.
At the top of the class we define two double precision variables. Note that it is
necessary to have each declaration on a separate line, a requirement that is peculiar to
class variables. We declare cr and ci as doubles to provide a complex number in the
form cr + ci*I. These two variables are assigned during instantiation via the
constructor. The two functions inside the class allow the real and imaginary parts to be
returned as double precision numbers. The
complex class is really very simple, but it
facilitates all of the external functions that operate
on complex numbers to function on a single entity
called complex. The entity behaves just like a
variable, but it is not declared but rather
instantiated. Thus, to create a new complex
number 3 + 4i, one must do two things. First
declare a variable as complex and second
instantiate that variable:
dim c1 as complex
c1 = new complex(3, 4)

What remains is to write the functions that carry
out the math. This is not a trivial process because
many of the complex functions have unusual
behavior that is unique to complex arithmetic.
Shown at right are the functions that provide
access to addition, subtraction, multiplication and
division as well as absolute. The internal symbols
+, -, * and / are not available for use by us because
the extended basic language does not allow these
symbols to be overloaded. This is a common
limitation that many languages impose on
programmers to avoid the many problems that
might occur if the capabilities of these symbols
were overloaded improperly. Thus, we use
plus(c1, c2), minus(c1, c2), mult(c1, c2) and
div(c1, c2) to replace c1+c2, c1-c2, c1*c2 and
c1/c2, where c1 and c2 are arbitrary complex
numbers.

 The function abs(c1) returns the absolute
value of the complex number c1, and takes on two
forms. The nominal form, abs(c1), returns a

155

complex number with an imaginary component of 0. It is sometimes useful to a
program to provide only the real portion as a double, so dabs(c1) is included, which
returns a double.

 The other functions are shown on the next page. All of these functions have
overloaded versions that handle strings or doubles, and the compiler is capable of
handling functions that reference a new variable that is created by a class. One might
question why these functions can be overloaded while the +, -, * and / functions cannot.
In principle, the compiler could allow all of these objects to be overloaded. But to allow
the basic symbols to be overloaded represents a significantly higher level of compiler
sophistication than to overload simple functions which can be parsed in a single pass.
Thus, one should not be surprised to find that the compiler allows for standard function
overloading but does not allow operator overloading of the basic math symbols.

In general, each of these functions creates and
instantiates a new
complex number
which is returned by
the function to the
calling program. The
value is returned by the
function, and with the
exception of the dabs()
function, the statement
needs to be prepared to
receive a complex
number. The most
straightforward
approach is to
instantiate a complex
variable to receive the
result. But, one can
use the complex value returned in any function that
can handle a complex. For example, the following
statement is allowed:

ctot= div(mult(plus(c1, c2), abs(c1)), minus(c1, sqrt(c2)))

To be clear, then, one can use complex variables
and the results of the complex functions in any
statement or equation just like doubles, provided a
function has been written to handle the target math.

156

5.4. Database Classes

Some languages include records or structured declarations which allow the programmer
to create a collection of variables of different types that are referenced by using a single
name. Such structures (records) are invaluable for creating databases. Unfortunately,
our version of extended basic does not include records or structures. Fortunately,
classes can do the same thing, and provide additional flexibility and processing
capabilities.

The example at right shows a student class which stores information about a student in a
single variable declared and instantiated as a class. The example includes only a small
number of variables compared to a true student record, but it will serve the purpose.
First note that the class declares a set of variables at the top which are of different types.
Each time the class is instantiated, all of these variables are copied into the variable
declared as type “student”. Here we demonstrate using an array, S(1..10), to allow for
multiple students. Each array element represents a student, and all the data associated
with the student. A new student can be instantiated either by name or student id
number, which provides flexibility. After the gpa semester data are entered, the average
gpa over all semesters can be accessed by using the s(i).gpa extension. Note that the
variable gpa is also declared in the main program. This is not the same variable, and in
fact, gpa is a function that returns the value. There is no conflict, and indeed one could
use gpa (the variable in main) to store the s(i).gpa value. Outside of the class, it is not
possible to tell whether a dot extension is accessing a class variable or a class function
as both behave identically. While the above example demonstrates a vastly
oversimplified student record, it should be clear how one can expand this class to handle
additional data and carry out additional analyses via function calls.

157

Chapter 6
Advanced Topics

This chapter investigates object oriented programming in more detail, with an emphasis
on the optimization of a program to enhance code reliability, maintenance and execution
speed. Although code reliability is an important goal from the very first program one
writes, it is not realistic to learn the elements of programming while simultaneously
optimizing the ability to maintain the program in the future. In fact, most programs
written in the course of learning programming will be disposed of after the grade is
received. Coding elegance is sacrificed for expedience and the desire to simply finish
the assignment.

This approach does not work well when one is writing a program in a research or
commercial environment. Programs written under these conditions now must satisfy
three goals: reliability, speed and maintainability. This chapter addresses these three
goals from various perspectives, and in a depth that is beyond the scope of first semester
courses in programming.

6.1. Optimizing Transparency, Maintainability and Reusability

The term transparency refers to code that is written so that the purpose of each line of
code is easily deciphered based on standard coding logic. The term maintainability is a
reference to code that can be modified or improved by both the original writer of the
program and other future programmers. Finally, reusability refers to the ability to use
the entire program, or segments of the program, in other applications or for other
purposes. The goals of this section are to explain why these goals are important, and to
provide insights into how these three goals can be achieved.

These three goals are complimentary, and rarely does an improvement in one area not
enhance the other two. The issue of maintainability, however, deserves a brief
introduction. It may seem that writing code to be maintained by the original writer, and
code to be maintained by other programmers, requires a different approach. This
assumption is not correct. One should always write code as if someone else will be
responsible for maintaining the code. No human has perfect memory, and a section of
code that appears transparent during the initial coding process may have obscure
function when examined a few weeks later by the original programmer. Thus, the
additional effort of implementing the following concepts represents an insurance policy
that the code written today will have utility tomorrow.

158

6.1.1. Variable names should reflect function

During the early days of programming, when memory was expensive and compilers
were in the early stages of development, variable names were restricted by length. Early
implementations of Basic often limited variables to a letter followed by a number. Early
Fortran compilers limited variables to six characters, and constrained the first letter to
follow variable type rules (e.g. integers must begin with i, j, k, l, m or n). The most
significant problem created by this constraint was the inability to use variable names
that conveyed function and purpose. Scriptor allows variable names to be 64 characters
in length, and that flexibility allows the programmer to assign variables names that are
meaningful. And while this might appear to be a superficial capability, the use of
properly named variables can make a significant difference in generating code that is
transparent (e.g. easy to understand). Lets compare two programs.

// Program 1
n1=0.0
k=0.0
do
 i=0
 do
 xx=rnd
 yy=rnd
 i=i+1
 if xx*xx+yy*yy<1.00 then
 n1=n1+1
 end if
 loop until i>10000
 k=k+i
 api = 4.0*n1/k
 print("Current value of pi = "+str(api))
loop until check_for_user_action("user")

// Program 2
hits_inside_circle=0.0
total_trials=0.0
do
 ntrials=0
 do
 x_random=rnd
 y_random=rnd
 ntrials=ntrials+1
 if x_random^2+y_random^2<1.00 then
 hits_inside_circle=hits_inside_circle+1
 end if
 loop until ntrials>10000
 total_trials=total_trials+ntrials
 pi_calc = 4.0*hits_inside_circle/total_trials
 print("Current value of pi = "+str(pi_calc))
loop until check_for_user_action("user")

159

Note that the second program is much easier to follow in terms of program logic. The
use of descriptive variables makes the process of deciphering the logic not only faster
but also less prone to misinterpretation. The use of comments would further help this
process, but even without any comments at all, the use of descriptive variable names
makes the program easy to follow.

6.1.2. Optimizing Comments

The idea of adding commentary to a program is as old as programming, and all
languages include the option of adding a line of code that is a comment line. As the
concepts of reusability and maintainability became more important, languages added the
ability to add a comment at the end of a line of code. The programmer should include
comments in the following areas, and in the order and/or location listed.

Program Overview and Input Requirements (top, #1). The program should have
comments at the beginning which include the name and date of the programmer
followed by an overview of what the program does. Following this brief introduction,
the comments should include a detailed list of what input is required, and the formatting
that the program expects. The importance of a discussion of the input protocols cannot
be overemphasized because the future utility of the program depends upon the
information provided.

Timing and Quit Options (top, #2). An estimate of the execution time of the program
should be provided along with methods available to the user for stopping execution.
Programs that run in a few seconds or less do not need any Quit options, but any
program that takes more than 15 seconds should have a method of stopping the
execution. Time is valuable, and nothing is more frustrating than to be forced to wait
for a program to end knowing that there is some problem that will prevent the output
from being useful (e.g. missing or incorrect input data). Scriptor provides many
different methods of monitoring escape/quit situations, and the user needs to know
whether to push Q, escape, command+period, the mouse button, the stop button or some
other key.

External Objects (top, #3). If a program relies on the availability of external objects
(methods or classes), these objects should be named and the local paths and filenames
should be given. This information should be provided even if the program is loading
these objects automatically. The comments in this area should include an overview of
what the external objects do in terms of the overall functionality of the program.

External Files (top, #4). If a program relies on the availability of external data files,
these should be listed and the local paths and filenames should be given. This
information should be provided even if the program is loading the files under program

160

control, because if these files are not present, the program will likely require user
intervention. In that regard, the nature of the data within the required file should be
described. For example,
// This program opens a text file called "dictionary.txt" inside the folder "user_files". This file
should contain a list of correctly spelled words separated by end_of_line markers (const_eol).
The program can adjust to any length file, so larger or smaller dictionaries can be substituted.

Section Function (place prior to relevant section). Comments should precede any
section of code that performs a specific task. The section of code can be short or long
depending upon how effectively the variables have been named to indicate the meaning
or function of these variables. If is very helpful to reusability if the section of code is
indicated to be CPU intensive and important to the overall timing of the program.
Future programmers may wish to target this section for optimization.

Line Function (following code on same line). One can add a short comment at the
end of a line of code to indicate what that line does. The necessity for such comments
is often alleviated when the programmer uses descriptive terms for the variables.

Comment Markers. There are three comment markers available. The standard C-type
comment marker, //, and the Basic or Fortran marker (the single quote '), are
interchangeable. These markers indicate the start of a comment, and the comment
continues until the end-of-line marker is encountered. If a long comment is desired,
and the comment will be divided up into paragraphs, a new comment marker is required
at the beginning of each paragraph.

The Rem Marker. The "Rem" marker is also available, but is designed to be used by
the instructor to make comments inside a student program. The comments are marked
in bright orange, easy to find, and easy to remove by using the "Remove Instructor
Comments" menu item under Debug. The programmer is welcome to make use of Rem
statements, of course. Rems are commonly used to mark sections where further coding
or optimization is required.

 6.1.3. Optimizing Structure

The entire concept of structured programming is to enhance the readability of the code
and improve the ability of the programmer to maintain and optimize the code. Some
programmers operate under the assumption that languages such as extended Basic and
C++ provide automatic structuring by virtue of having a full compliment of structured
loops and conditionals, which virtually eliminates the need for the GOTO statement.
And this assumption is to a certain extent true. But there are things that one can do to
optimize structure and readability. The following are presented in descending order, so
the most important concepts are presented first.

161

Use Methods to Enhance Structure, Readability and Reusability. The classical
argument for using methods is to eliminate unnecessary coding by reusing code
segments in functions and subroutines. This process reduces program size, but it also
makes the program easier to read and understand. By making a program modular, and
using comments to fully explain function, a program is enhanced in terms of readability
and reusability. Furthermore, grouping functions and subroutines together if they share
a common purpose enhances readability. Thus, modules should be explored whenever
this condition is met, even if there is no need to create a module. (The common
situation that prompts the use of modules is a collection of functions or subroutines
which use shared variables that are declared as private to the module.)

Exception GOTOs. Despite all the rhetoric in the computer science literature and in
this book against the use of goto statements, there are times when the use of a goto
statement is not only useful, but wise. Although one can almost always find a structured
solution that avoids the use of a
goto, the added complexity that
results can sometimes obscure
rather than enhance program
structure.

An example of a program that
uses a goto statement to enhance
readability is shown at right.
This program asks the user a
series of questions, and analyzes
the response to assign a Jungian
personality profile. Parts of this
program, along with the
questions and analysis section,
have been removed to shorten
the example. The goto
statement is used to handle a
situation where a user decides to
exit the questionnaire
prematurely. It is more logical
to place the code that handles
this situation at the bottom of
the program, rather than insert it
inside the code that handles the
questionnaire. In this example,
the goto statement is handling what is known as a user exception, a non-normal situation

162

that is created by a user doing something that is outside the normal expected pattern.
Using goto statements to handle user exceptions improves the flow of the main portion
of the program and makes the program easier to understand and follow. A more general
suggestion is that goto statements should be considered whenever the following
conditions apply:

1. Exception conditions when the exceptions will require premature exit from a highly
structured code segment, and no reentry into this code segment is desired.

2. The goto statement is sent to a label which clearly defines the purpose.

3. Only one or at most two goto statements are being used.

6.2. The Nature and Optimization of Objects

Objects are components of a program that add a new behavior or capability. An object
oriented programming environment provides objects that are encapsulated so that
interaction of these objects with the other components of the software is fully controlled.
Scriptor provides four types of external objects: Functions, Subroutines, Modules and
Classes. To this set we add Main, which represents the primary object which
orchestrates the flow of the program and interacts with the other objects to carry out the
function of the program.

It is worth noting that programming objects take many forms. An object can be as small
as a single variable or as large as a 120, 000 line module containing hundreds of
methods. Big objects are made up of smaller objects, and all objects need to be able to
communicate with each other as appropriate while not contaminating other objects in
the process. Contamination can take many forms, some obvious and some subtle. An
obvious contamination would be a variable changing the value of another variable when
its value is changed. In the early days of Fortran, and the use of common memory
blocks to transfer information between methods, it happened accidentally all the time.
Such problems were hard to diagnose and led computer scientists to develop languages
that prevent, or nearly eliminate, accidental contamination. Indeed, Fortran 90 (one of
the more recent versions of this popular scientific language), common blocks are
eliminated. In that regard, Fortran 90 is considered to be an object oriented version of
Fortran 77. An object oriented language has many built-in features that constrain the
programmer to write object oriented code. Much of the work is done by the language
itself. One prominent example relevant to Scriptor is the requirement that every
variable be declared. Early versions of Fortran autodeclared variables in a “you use it,
you own it” approach that made programming quite fast and sometimes disastrous. The
problem with autodeclaration is that a simple misspelling of a variable would not

163

generate an error, but simply create a new variable with the misspelled name. But this
would happen automatically and the programmer would not be notified. Programmers
could (and often did) spend hours tracking down simple spelling mistakes involving
variables. Thus, autodeclaration is not allowed in object oriented languages. A
programming language, however, can only do half the job of creating an object oriented
program. The programmer must do their part, and the purpose of this section is to more
fully examine the methods and procedures of object oriented programming. We must
first describe the concept of encapsulation which mediates the interaction between
objects. We start our discussion with an allegory.

The watch maker, the surfer and the watch. Imagine an island in the South Pacific
where the key industry is fishing. A young watch maker has opened up a new shop to
sell his unique watches which are designed with the fisherman in mind. He makes
watches which not only tell the time but show the phase and amplitude of the ocean
tides. He makes the watch so that the fishermen can know when it is optimal to go
fishing (fish behavior is closely related to the tidal rhythms). But one day a surfer buys
a watch because he knows that the size and structure of the waves is best when the tide
is going out. But the surfer is adventurous and often gets spilled onto the sand, and the
watch stops working because the water resistant housing had not been designed to
withstand the battering of the watch against the sand. Although the watch still works, it
is no longer accurate.

The above story may appear to have no useful connection to object oriented
programming, but it demonstrates one of the more important aspects. Assume that the
watches represent objects and the purchasers are programmers. The watch has been
designed to be encapsulated so that its inner workings are protected from the
environment, and yet it must return information to the owner. Thus, the hands of the
watch must present data to the wearer. Because the watch is designed by the watch
maker to present time following a standard code, the owner can read the time by looking
at the face of the watch. He can also follow the instructions to read the fourth hand
which points to the tide level markers, from low to high. The human does not need to
know how the watch works, only how to read the markings on the face of the watch.
What makes the watch function properly is encapsulation. The complex inner workings
are protected from the outside world by the case. And yet the surfer has taken the watch
into an environment where it was not designed to work, and the encapsulation was
found to be inadequate. This kind of problem applies to both watch makers and to
programmers. One must make watches and write programs that can handle untested and
unanticipated programming environments. Programmers are human and it is nearly
impossible to anticipate all of the possible applications of a given program, just as the
watch maker did not anticipate the surfer. Object oriented programming provides a set
of rules to force rigorous encapsulation that when applied properly guarantees that a
programmer using your software will not damage the inner workings of the methods or

164

classes that you have written. Thus the first goal of this section is to describe the
methods of encapsulating objects (from methods to classes) so that the objects are fully
protected from other objects, and equally important, these methods will not contaminate
code in other objects (Main, other methods or classes). In this regard, the programmer
and the watch maker have the same goal. To provide an object that works, interacts
with the user following well-defined rules, provides the desired information, and is
impervious to outside perturbations.

6.2.1. Encapsulation.

Scriptor, and all modern programming languages, are designed to optimize the
encapsulation of objects. But the programmer needs to follow a few rules to achieve
this goal. The following rules help optimize encapsulation.

Avoid using external globals. A common trick that most programmers tend to abuse
is to declare a variable in the Main program, and then manipulate that variable within a
function or subroutine rather than pass the variable as an argument. This approach is
popular because few programming tasks are more laborious than typing in a long list of
parameters. There are multiple problems with this approach. First, the use of globals
means the code is not reusable. Second, the code is not transparent, because the use of
globals, even when documented, creates an interdependence that is hard to decipher.
And finally, the reliance on global variables breaks the encapsulation of both Main and
the methods that share them.

Use ByRef variables only when required. Although the ability to pass a variable by
reference provides flexibility, this capability should only be used when necessary.
ByVal variables are much safer because they enforce encapsulation.

Classes are the highest form of object. All objects are not created equal. The
highest form of object is the class, which provides a combination of power and
encapsulation that is not available to any other object. These objects were introduced in
Section 2.9.1 and are discussed in detail in Chapter 5. What makes classes so powerful
is the availability of constructors and destructors, as well as the process of instantiation,
which makes a unique copy of the code within the class so that it has the properties
defined by the constructors during the instantiation process. Thus, a single class can
provide multiple behaviors depending upon how they were instantiated. In addition, all
of the functions within a class are available by using the following calling protocol
(notice the “dot”):

instantiated_name.method_name(optional parameters) or
variable = instantiated_name.function_name(optional parameters).

165

The process of instantiation provides an additional layer of encapsulation by forcing the
programmer to assign a temporary variable to represent the class. We call this the
instantiated name. For example,

dim instantiated_name as classname // declaration
instantiated_name = new classname // instantiation

creates an instance of the class called classname. A key advantage of classes is that the
programmer has control over the assignment of the instantiated_name. Thus, there is no
possibility of name conflicts within the program, which is a dimension of encapsulation
that is often overlooked. Furthermore, the instantiated_name-dot-method_name
requirement provides further protection from naming conflicts.

In addition to naming advantages, classes also provide sophisticated control over
memory usage. This accrues from the availability of a destructor which can carry out
memory management prior to the class going out of scope. Because the destructor is
called automatically and called only once, the process is easy to implement. We remind
the reader that each time a class is instantiated, the entire class is copied into memory
and variable memory assigned to the class is allocated. When the class goes out of
scope, this memory is returned to the operating system. Hence, the destructor does not
need to manipulate the memory allocated to the class, but may need to redim global
arrays that were used by the class. Another use of destructors is to release semaphores
that were set to prevent other objects from using variables being manipulated by the
class in question.

Because classes can be instantiated within classes, it is noted that destructors are called
from the inside out. Hence the last destructor that is called is the destructor of the parent
class. This arrangement needs to be kept in mind when redimming global arrays that
may have been shared among the various classes. Furthermore, destructors take no
arguments and cannot return values. The destructor subroutine does have access to all
the class variables. Finally, recognize that destructors are optional.

166

Modules as method encapsulators. The syntax of modules was introduced in
Section 2.9. When properly used, modules provide excellent encapsulation of the
methods that are enclosed, but because encapsulation is not automatic, some discussion
is necessary. The power of modules
derives in large part from the ability to
declare variables inside the module
that can be shared among the methods
enclosed. These are called module
variables and are not to be confused
with the variables declared inside the
methods enclosed by the module. The
reason modules are not automatically
good encapsulators is that all variables
and methods default to public. This
means that code outside of the module
has access to these variables and
methods by default, and this is a poor
recipe for encapsulation. Many
programmers view classes as good
object oriented constructs and modules
as poor (or dangerous) object oriented
constructs, precisely because all class
variables are private whereas module
variables default to public. But there
are times when modules are very
useful, and one can write modules that
are well encapsulated. The outline
shown at right presents a module that
is designed to be properly
encapsulated. First, there are no public
module variables declared. Second, all
public methods are named by reference
to the name of the module followed by
a descriptor ("_uniquename"). The
goal is to facilitate code transparency. This approach turns a module into an object that
has superficial behavior reminiscent of a class. Modules do not require instantiation,
and operate in a simpler fashion. There are times when modules are the best choice.

167

Object Errors. Most of the compiler errors that one encounters are easy to understand,
and as such, are easy to fix. But there is one type of error that is a source of confusion
for new programmers, and this error involves the nature and implementation of ByRef
and ByVal parameters. This is an example of an object error created when the
properties of an object are violated by the programmer.

Consider the following error:

Error number = 21 near line number nnnn
Err(21) = Can't pass an expression as a ByRef parameter.

This error is often encountered when using the following statement:

open_user_text_file(byref ifilenumber, byref filename, byref filecontents) as boolean

when the programmer tries to replace one or more of the variables ifilenumber and
filename with explicit variables. For example,

filename="unknown"
Q = open_user_text_file(0, filename, filecontents)

The question that invariably arises when this statement generates Error 21 is "why can't
the compiler figure out what I am trying to do?" The answer is the compiler could
indeed figure this out, but refuses to accept the usage because it violates object oriented
rules, and could lead to serious problems. We explore this issue in more detail in the
next section, but for now lets consider what could happen if the compiler allowed the
above usage. We are submitting the number 0 as the first parameter and the filename
has been assigned to "unknown". This combination directs the function
open_user_text_file() to open up a dialogue so that the user can select a text file. The
replacement of the variable ifilenumber with "0" will work just fine. But what if the
user assigns filename to equal a null string (filename=""). That combination directs the
subroutine to return the number of files in the folder "user_files" in the variable
ifilenumber. So what is the compiler to do with this variable when the user has place
the number 0 in this slot. The compiler has three options:

1. Never allow this situation to happen. If a number has been used in place of a ByRef
variable, the compiler throws an error condition and refuses to run the program. This is
the option that Scriptor selects.

2. Noting that a number has been used instead of a variable, the compiler simply
ignores those lines of code which attempt to assign a value to it.

168

3. The compiler replaces the number that was passed to the subroutine with the number
of files that were found in the folder. Assume the number of files was 6. From this
point on, any use of the number "0" will be replaced with the number "6".

The reader will no doubt conclude that option 3 is a terrible idea, but many early Fortran
and C compilers did exactly that. One could redefine the character sets via these
procedures. Very few modern compilers allow such draconian manipulations because
they violate the fundamental principles of object oriented programming. Indeed, the
option 2 listed above also violates object oriented rules because the behavior of the
subroutine is, under certain circumstances, undefined.

The above examples provide a perspective on why strict object oriented compilers do
not provide flexibility in replacing ByRef variables with expressions or values. And for
a computer environment that is to be used by students learning object oriented
programming, strong typing is the only logical choice. We explore what this means in
more detail in the next section.

6.3. Strong versus Weak Typing and Variable Conversions

Strong typing describes a programming language characteristic which imposes formal
restrictions on a user’s ability to mix variables of different types in expressions or in
method parameter lists. In contrast, weak typing describes a programming language
characteristic that allows users to freely mix variables of different types and do other
types of variable conversions and replacements implicitly. Virtually all languages fall
somewhere in between which makes the use of these terms rather subjective. In general,
the term strong typing is used to describe a language that allows mixed variables in math
expressions where conversion is well defined, while throwing a compiler error for less
common conversions or conversions which reduce precision. In that regard, Scriptor is
strongly-typed, and floating point and integer variables are allowed to be mixed in
expressions and assigned to one another. The user needs to remember that if an integer
is equated to a floating point number, the number is truncated (not rounded). Hence, the
expression i=4.8, evaluates to 4 (not 5 as would seem more logical). The decision to
truncate rather than round a real number during conversion to an integer is common to
scientific languages, a tradition established by the early Fortran compilers.

6.4. Variants and Polymorphism

There are times when weak typing is desired, and Scriptor versions 1.8.10 and higher do
allow the use of variants. Variants are untyped variables which can hold any one of the
variable types listed in Table 6.4.1. After assignment, these variables hold not only the
value assigned but information as to what type of variable it is. This is done by using an
integer ID number, as shown in the second column of the Table 6.4.1.

169

Table 6.4.1. Properties and Identifiers of Variants in Scriptor
Type ID Example Convert_to_string() Str()

Nil 0 nil nil 0
integer 2 1234 1234 1234
int64 3 9223372036854775800 9223372036854775808 9.223372e+18

single(a) 4(a) 12345E25 1.234500E32 1.23450e32
double 5 1.2345E297 1.23450000000000E+301 1.23450e301

currency(a) 6(a) 1234567.89 1, 234, 567.89 1.234568e+6
Boolean 11 true true 1
Boolean 11 false false 0

color 16 RGB(100, 0, 0) RGB(100, 0, 0) 6.553600e+6
(a) All real numbers, when assigned to a variant, will default to doubles. If a non-double is desired, it must
be set by assigning the variant to a variable declared as the desired type (single or currency).

Note that the ID in Table 6.4.1. is returned by the following function:

variant_type(v0) as integer
returns the integer ID that identifies the properties of the variant, v0
 ID = 0(nil), 2(integer), 3(Int64), 4(single), 5(double), 6(currency), 8(string),
11(boolean), 16(color), where the variable type or property is listed in parentheses.

The variant_type() function should be called whenever one needs to know which
variable type should be used to accept the value stored within the variant. It is not
recommended that any manipulation of variants be done other than to use an assignment
statement to transfer the contents of the variant into a variable of known type. The
example shown below illustrates this approach.

Polymorphic methods. The main reason variants are available is to simplify the
process of creating polymorphic methods. Polymorphism is the ability of a computer
language, or a method within a language, to handle multiple data types using a common
interface. For example, the sin() function in Scriptor works with arguments that are
singles, doubles as well as arprec real and complex string variables. This function is
therefore polymorphic because the same function name is used for the three different
argument types. A program in Scriptor can create a polymorphic function by using one
of two methods. The first approach is method overloading, which involves creating two
or more methods of the same name but with different argument types. The compiler
couples a function call to the correct method by matching the parameter types, and if
one or more parameters are Byref, the match must be perfect. What that means is if one
seeks to provide a math function which works with single, double, integer and currency
data types, then four different functions must be created to represent each data type.
Method overloading was discussed in section 2.7.1. An alternative approach is to use
variants in the parameters. The compiler will allow any parameter to couple with a

170

variant, and only one function needs to be written. Lets assume that we want to create a
function called fabs() which returns a floating
point (double) absolute value of an argument.
But this function must be able to handle not
only real and arprec string variables, but
Booleans as well. When a Boolean is passed,
the function will return 1 if true and 0 if false.
This function can be implemented within a
single method by using a variant, as shown in
the fabs() function example at right. The use
of variants to handle polymorphism is their
primary reason for existence, and when
implemented for this purpose, variant
parameters provide transparency and code
reusability. To guarantee transparency, the
variant should be transferred into a typed
variable prior to manipulation. This also
speeds program execution.

The use of variants can make a program hard to follow, and to many computer
scientists, the use of variants invariably violates the tenants of object oriented
programming. Some argue than any language that includes variants is, by definition,
weakly-typed. Because variants can be of any type, including no type, these variables
are not really weakly typed. More accurately, they are untyped until they have been
assigned a type via usage. It is thus a matter of semantics whether the availability of a
variant class makes a language weakly-typed. We suggest that if one seeks a strongly-
typed environment, it is best to avoid the use of variants. (Future versions of Scriptor
will include a preference that allows variants, goto statements and other non-object-
oriented constructs to be turned off.)

171

6.5. The Extends Keyword

Scriptor includes a few internal methods
that operate via extensions. These
including array sorting extensions (.sort,
.sortwith), array manipulation
extensions (.pop, .append) and color
manipulation extensions (.red, .green,
.blue, .hue, .saturation, .value, .cyan,
.magenta and .yellow). One can create
extension methods by using the extends
keyword, as shown in the example at
right. The extends keyword must
appear as the first element in the
parameter list, and takes the form:

extends variable_name as type

where variable_name is the name used
to represent the variable within the
function and type specifies the variable
type. If additional parameters are
included, these will be included in parentheses following the function name as shown in
the example. One can add as many additional parameters as desired, following the same
rules as are applied to non-extension functions. Some compilers require that all
functions involving extends must be declared inside a module, and earlier versions of
Scriptor used a compiler that imposed that constraint. Scriptor versions 1.8.14 and
above, however, use a more sophisticated compiler that allows extends functions to be
defined outside of modules.

6.6. The Call Statement

All functions, by definition, return a variable. There are times, however, when the
programmer would like to ignore the returned variable and use the function as if it were
a subroutine. Such situations can be handled by one of two approaches. The more
common approach is to put the result into the appropriate variable, and then ignore the
value of the variable. A cleaner, and more readable approach to this situation is to
replace the variable return assignment with the keyword “Call”. This usage informs the
compiler to ignore the returned variable and yet handle all the other aspects of the
function as normal. Thus, any ByRef variables listed in the function parameter list can
be manipulated by the function and returned as before.

172

Some argue that the Call Statement should not be used because it introduces ambiguity
regarding the nature of the function. This position is not valid. The use of the Call
statement is to be encouraged when the programmer intends to ignore the value
returned, because it clearly signals that such is the case. The alternative, which is to
ignore the contents of the returned variable, introduces potential confusion and
ambiguity. Other programmers will wonder where in the program the variable is used,
and this will make the program harder to understand, especially if the variable is used in
another context later on in the program.

6.9 Optimizing Execution Speed

The last thing a student should worry
about is execution speed. Nevertheless,
one of the more common complaints the
author (as teacher) has received from
students is that speed optimization is only
briefly discussed in class. So for all those
students, and users, of Scriptor and
MathScriptor, who seek faster code, here
is a list of things to do to make programs
run faster. The list is in approximate order
of importance. That is, items listed first
have the potential to increase execution
speed more than those listed at the bottom.
However, if one of these items is inside a
loop, small changes can make a bid
difference. Hence the first suggestion is to
find out which sections of code are taking
the most time, and optimize those first.

6.9.1. Gather Code Metrics

There is no point in spending time
optimizing code segments that are not
contributing significantly to the total
execution time. Normally, one can find a
code segment that is primarily responsible
for the total execution time, and improve
performance by carefully optimizing the key section of code.

173

The best way to examine code is to insert timing analyses. The module shown at right
collects and averages timing information and displays the results in the spreadsheet. It
can be found in the modules folder.

The code shown at right provides an
example of a program that has been
divided into segments for analysis. This
is a short, and artificial example to
demonstrate how the segments are
analyzed. This example loads the
module shown in the previous example
into the object panel. For this to work,
one must turn off simple mode so that
the program can instantiate external
objects. Each segment is assigned a
number (segment 1 must be the first one
executed). Before the first statement of
the segment, insert the start_timer(#) line
and after the last statement of the
segment, insert the stop_timer(#) line,
where # is the segment number. The
program at right has three segments so
marked. When the program is run a few
times, the averaged results shown below
are presented in the spreadsheet:

Segment Time (ms) Percentage

1 718 25.76
2 458 16.43
3 1, 611 57.80

This means that the third segment is
responsible for ~58% of the of the
execution time, and should be tackled
first. We will now discuss the various
methods and procedures of optimizing
code. Then we will return to this particular example and see how to best optimize
segment three so that it executes faster.

174

6.9.2. Loop Optimizations

Because loops are repeated multiple times, they offer significant opportunity for
optimization. The following are methods of improving execution speed of loops.

Extract unnecessary statements. During
a loop operation, only those statements that
are affected by the loop parameters or are
involved in the loop operations should be
included inside the loop. Math that can be
removed from the loop should be removed,
even if that means creating a new variable
to hold the results.

Never calculate loop endpoint in loop
statement. Never use a calculated value
for the end point of a loop statement if it
can be avoided. Loops carry a great deal of
overhead, and the requirement that the
statement evaluate the endpoint at each loop
reset adds a significant burden. If the
endpoint can be calculated once and placed
in a variable, using this variable in place of
the expression in the loop statement will increase execution speed. If the endpoint is
changing during loop execution, use a conditional exit statement to handle the situation.

Example. The loop that was executing slowly in the above example has been modified
at right to remove all possible calculations outside of the loops. Note the use of jmax,
which is calculated only once, as the end point of the for j=1 to jmax loop. This change,
and the move of the buffer_copy_to_canvas() statement outside the loop system,
represented the most significant changes. However, by moving the buffer copy outside
the outer loop, we cannot watch the drawing process in action.

All of these changes improved the performance of this code segment by 14% (1600 ms
down to 1370 ms). While that represents a meaningful improvement, it involved a fair
amount of code rewriting. That is why code optimization should be carried out first on
the time critical segments, and one should not waste time on those segments of code that
contribute little to the overall execution time.

175

6.9.3. String Optimizations

If strings are used in an application, it is
likely that the manipulation of the
strings is a major contributor to total
execution time. Unlike math
operations, which can take full
advantage of hardware math functions,
string functions are handled entirely in
software. Thus, they are comparatively
slow. Added to this is the fact that
many string operations are carried out
on very large strings. One of the most
time consuming operations is to extract
substrings from a long string-based list.
Consider the timing test shown at right.
The first segment opens up the
dictionary.txt file, which contains 24,
259 words. The timing module
indicates the following times for the three segments: 11 ms (#1), 22088 ms (#2) and 13
ms (#3). Thus, the standard method of extracting strings using nthfield() is not efficient
when working with large files. Which brings us to the first recommendation.

Use String_Split() for large lists. When extracting records from a large string list,
string_split() is significantly faster than NthField() by more than a 1000 times. The
reason is that nthfield, whenever it is called, starts counting from the beginning each
time and then extracts the desired field. As the number of fields increases, the process
gets slower and slower. If there are more than 1000 records, NthField is a bad choice.
The only time NthField should be used on a large list is when only one or two fields are
to be extracted and one does not want to use the memory necessary to hold the other
fields.

Use String_join_quoted() for large lists.
Generating a large list also can take a fair amount
of computer time. For example, to recreate the
dictionary list can be done in one of two ways.
The normal method is shown in segment #4, and
uses the + operator to append the words(i) string
to the end of the list, s1. It takes 6550 ms. A far faster method (17 ms) is to use
string_join_quoted() which takes the entire arrays and puts it into the string in one
operation using the second parameter as the delimiter. The string_join_quoted()
function puts quotes around the string in the event the string contains the delimiter. This

176

is the preferred method of handling this situation, and if relevant, one can use
string_split_quoted() to extract.

Use byte operations whenever possible. There are byte versions of many string
functions, and these will speed up operations considerably. However, they will fail if
the string you are working on is using multiple byte characters. If you are working in
the US, Canada or Europe, then the chances are good that the strings you are working on
are single byte encoded. If you are working in Japan or China, the chances are good you
cannot use these functions. In general, byte operations are usually an order of
magnitude or more faster that the corresponding multibyte capable string functions.

ascb(s0) as integer ascii value of the first byte of s0

chrb(i) as string returns single byte ith ASCII character

instrb([kstart], source, sfind) as string returns the position of sfind within the string
source. The optional parameter kstart indicates the first character position at which to
start the search. This function is case insensitive.

leftb(s0, n) as string returns the leftmost n bytes of string s0

midb(s0, istart[, nlength]) returns the nlength bytes starting at istart from s0
if nlength is not included, all bytes from istart to end are returned

replaceallB(source, substring, replacement) as string replace all occurrences of
substring by replacement in source by byte. case sensitive.

replaceb(source, substring, replacement) as string replace substring by replacement in
source by byte. case sensitive

rightb(s0, nbytes) as string returns the rightmost nbytes of characters from s0

Avoid RegEx functions. Regular expressions are very powerful, but two orders of
magnitude more complicated than normal string operations. Regular expressions should
be avoided when speed is an issue.

General recommendations on string speed enhancements. There are a number of
small things that one can do to keep string manipulations efficient. In general, if there
is a function that will do what you want, it is almost always faster to use the function
than to write the code yourself. The string functions have all been highly optimized and
use all of the tricks available for making the operation fast and memory efficient.

177

6.9.4. Graphics Optimizations

There are few more CPU intensive tasks than graphics. And making recommendations
on how to speed up graphics is made difficult by the fact that the speed of many
operations depend in large part on the type of graphics card that is present as well as the
operating system. Nevertheless, there are some general observations that can be made
to improve the speed of graphics code segments.

Use fast buffering. Scriptor is designed to use buffered graphics for two reasons.
First, such an approach is required for flicker-free graphics. Second, such an approach
is faster. All graphics writing to the buffer is absolute. No scaling or anti-aliasing is
done, and the graphics functions can operate at full speed. Although the buffer copy to
canvas is optimized heavily, it is still a CPU intensive operation, especially if scaling
and anti-aliasing are carried out. The latter are done whenever the buffer size is
different from the target canvas. So the single best approach to achieve fast graphics is
to use a buffer that is the same size as the canvas for which the graphics are ultimately
to be targeted. This will increase the speed by 10-30% depending upon the amount of
graphics statements preceding the buffer copy process. If writing a game, where speed
is of paramount importance, making the buffer the same size as the target canvas is an
excellent idea.

Use small buffers. The time to execute a graphics statement is proportional to the size
of the object being drawn. If a large buffer is being used, the objects drawn will
necessarily be scaled to the size of the buffer. To a first approximation, graphics time,
TG, is proportional to the square of the buffer size, or:

TG = ß*buffer_width*buffer_height

where ß is a scalar proportional to the number and nature of the graphics statements.
The point of this equation is that ß is determined by the graphics that is being carried out
and is invariant to the buffer size. But by simply dropping the buffer dimensions from
3000x2000 to 1500x1000 will speed up the graphics by a factor of ~4. Naturally,
graphics tend to look better when a larger buffer is used, so quality and speed are
mutually exclusive. The goal is to use as large a buffer as is necessary to achieve the
desired quality, but no larger.

Use Sans Serif Fonts. When speed is an issue, and a great deal of text is being drawn,
the complexity of the characters affects the speed. Using sans serif fonts will increase
the speed of the text handling portion of the graphics by about 30%.

178

6.9.5. File Optimizations

There is very little a user can do to optimize file operations because virtually all of the
work is done by functions that are dependent upon code within the operating system of
the computer as well as how the operating system has been setup to access disk drives
and buffer the data. There are, however, things that can be done to increase the
efficiency of file manipulations. Here are a few suggestions.

Use binary files when possible. Text files are handled using sequential access. In
contrast, binary files are handled using direct access and in general, these processes are
much faster. Furthermore, binary files allow access to individual elements using the
binary_file_read(filepath, variable, nthelement) as integer which is a highly efficient
method of accessing a large database. Because the file data are buffered, each data
request only initiates a disk access when the data are outside of the buffer. This makes
the process extremely fast under most circumstances. Windows XP (Service Pack 2 and
higher) and Mac OSX (10.3.9 and higher) handle the buffering process very efficiently
and will dynamically increase the size of the buffer to improve efficiency.

6.9.6. Optimizing Math

There is not a lot that a programmer can do to speed up math other than to use improved
algorithms. That is of course an important goal, but a detailed discussion of algorithm
optimization is beyond the scope of this section. There are a few simple things that can
be done to increase execution speed.

Avoid mixed operations. When integers and real variables are used extensively in an
algorithm, try and do all of the integer operations first before combining with the
floating point variables. Integer math is significantly faster. Mixing integers and reals
adds additional latency due to the cost of the type conversions. The CPU time for
various operations is shown in Table 6.9.6. Note that operations that require that the
integers be converted into reals prior to carrying out the function take more time than
those that are directly carried out on doubles. The one exception is pow(real, integer),
where the internal function uses a faster algorithm to handle integer exponentiation
which provides a 17% faster result than pow(real, real).

Avoid using trig, log and pow functions. Although the algorithm is invariably the
primary determinant in what functions are used, it is often possible to write equations in
forms that avoid or minimize the use of transcendental, logarithmic and exponentiation
functions. These functions tend to be 2 – 4 times more CPU intensive than simple math
operations. It is to the credit of the software and hardware developers that the complex
math functions are so efficient. It should be noted that the hyperbolic functions sinh(),

179

cosh(), tanh() are carried out using Arprec arithmetic which is responsible for the high
cost of these functions. If the user plans to make heavy use of hyperbolic functions, and
lower precision is acceptable, it is best to replace these with their exponential
equivalents (see Appendix 4).

Table 6.9.6. Relative CPU Time (Cost) for Math Operations on Integers and Doubles(a)

Operation Cost Operation Cost Operation Cost
i - j 2 a - b 12 log(a) 123
i + j 1 a + b 12 exp(a) 64
i * j 1 a * b 23 sin(a) 62
i \ j 7 a / b 35 logGamma(a) 1, 620
i / j 52 sqrt(a) 24 sinh(a) 68, 700

sqrt(i) 33 pow(a, i) 95 bessel(a, b) 2, 083, 000
pow(i, j) 220 pow(a, b) 114 zeta(a) 4, 729, 000

(a) Cost is measured in CPU time for an average of Intel and G5 processors and based on one-
million operations on random values. Random integers are indicated using the variables i and j
and random doubles are indicated using the variables a and b.

6.9.7. Compiler Pragmas

The term pragma is an abbreviation representing a “pragmatic compiler directive”, a
request of the compiler to modify its methods and procedures for some “pragmatic”
reason. The pragmas relevant to program speed are all handled by using the #pragma
statement:

#pragma directive [boolean]/sets or clears compiler directives.
BackgroundTasks True (enables yielding to background threads, which is the default)
BackgroundTasks False (disables yielding to background threads and speeds up program)
DisableBackgroundTasks (disables yielding to background threads and speeds up program)
BoundsChecking True (enables monitoring of array subscripts to trap out_of_bounds exceptions, the default)
BoundsChecking False (disables monitoring of array subscripts, and speeds up program)
DisableBoundsChecking (disables monitoring of array subscripts, and speeds up program)
NilObjectChecking True (enables trapping of nil objects prior to usage, which is the default)
NilObjectChecking False (disables trapping of nil objects prior to usage, and speeds up program)
StackOverflowChecking True (enables monitoring of the stack size to prevent overflow, default)
StackOverflowChecking False (disables monitoring of the stack size, and speeds up program)

180

If the goal is to speed up a program as much as possible, the following four pragma lines
will provide the maximum speed enhancement:

#pragma backgroundtasks false
#pragma boundschecking false
#pragma nilobjectchecking false
#pragma stackoverflowchecking false

These pragmas will have greatest impact when matrix operations on multi-dimensional
arrays are involved.

It is recommended that these directives not be used until a program has been fully
debugged and tested. Modern operating systems (Mac OSX, Linux, Windows XP and
Vista) will not allow a program to damage the operating system or other programs, and
thus these pragmas can be used safely. However, writing a program with a
computationally intensive loop, and running this program with backgroundtasks turned
off, can essentially prevent Scriptor from releasing time to the user interface or other
programs. Multiprocessor computers will handle this situation with grace, and assign
processor time to other programs and prevent lockout. Nevertheless, the Scriptor user
interface can be locked out, and one might need to do a forced quit to stop the program.

6.9.8. Common Misconceptions

There are a number of logical steps that can be taken to improve the speed of a program.
The above guidelines provide a starting point, but each program is different. The best
way to optimize a program is to use both logical analysis, based on the information
provided above, and trial and error. The purpose of this section is to clear up a few
misconceptions that students often have in terms of execution speed.

compilation and speed. There is no significant advantage to compiling the program
separately with regard to speed. The core routines in Scriptor and MathScriptor are
already compiled and the overhead associated with compiling the users program is
rarely more than a second. If the user has developed a very large program using
MathScriptor, and compilation is generating noticeable latency, then it is time to switch
to Xojo (www.xojo.com), C++ or MatLab. If some of the MathScriptor internal
functions are needed, contact R.R.Birge (rbirge@uconn.edu).

ByRef is faster than ByVal. This statement is true, but the CPU difference is too small
to measure under normal circumstances. Where this difference might be important
under some languages would be in the passing of arrays, but in mathscriptor, arrays are
always passed ByRef whether labeled as such or not.

181

Appendices:

Appendix 1: Language Reference Manual . 182
Appendix 2: Glossary of Programming Terms . 307
Appendix 3: ASCII Character Codes . 321
Appendix 4: Selected Mathematical Relationships . 324
Appendix 5: Fundamental Constants . 335
Appendix 6: Selected Conversion Factors . 337
Appendix 7: Table of Atomic Units . 340
Appendix 8: SI, cgs, esu, emu, Gaussian and Atomic Units 341
Appendix 9: Installing Scriptor and MathScriptor . 353
Appendix 10: Troubleshooting and FAQs . 355

182

Appendix 1
Scriptor and MathScriptor Language Reference

Version 3.6.0 (January 2015)

This appendix provides an overview of the language syntax of Scriptor and MathScriptor.
Because all of the features of Scriptor are present in MathScriptor, reference will be made
to Scriptor in most of this discussion. When a feature is present only in MathScriptor, that
fact will be indicated by using the symbol |MS| next to the keyword. When a feature is
present only in MathScriptor versions above 2.0, that fact is indicated by using the
symbol |Ph| next to the keyword. The help screen is a shorter version of this appendix,
and can be consulted within the program by pressing the Help button.

Scriptor is intended primarily as a learning platform while MathScriptor is intended
primarily for scientific and engineering programming. Both Scriptor and MathScriptor
reside within the same program and the user can switch between the two environments
at will from the Compiler Menu. Access to MathScriptor requires that the program be
registered. MathScriptor provides additional math capabilities (arbitrary precision,
complex arithmetic, expanded integration, wavelet transforms, additional matrix
operations), access to external objects, web access under program control and
compilation with optimization. The Scriptor environment can run programs compiled by
MathScriptor, however. The advantage of working in Scriptor during the learning process
is that the additional features and complexity of MathScriptor can create problems that are
difficult to diagnose. Thus it is recommended that all students learning how to program
work in Scriptor during the early stages of their learning process, and if MathScriptor
functions are needed, run MathScriptor in Simple Mode (first menu option under Debug).
When Simple Mode is turned on, external objects are not available. External objects
provide significant power and flexibility, but can cause confusion during the debugging
process.

There are a few things to keep in mind when programming in Scriptor. First,
capitalization is ignored. All variables and operators are converted to lowercase prior to
compilation which means the compiler treats Adam, aDam and ADAm as identical
variables and Sin(x), sin(x) and sIN(x) as identical functions. Second, spaces are
important, but the number of spaces is rarely important except within quotes or strings
or between methods and their parameter lists. Thus, the following statements: Sin(x)
and Sin(x) are identical and there is no difference in how the compiler interprets the
equation: 1+2*x+3*x*x versus 1 + 2 * x + 3 * x * x. However, it is important not to
have a space between a function or subroutine name and the first paren that marks the
start of the parameter list.

In the following examples, any variable that begins with an I, J, K, L, M or N is an
integer, with a C is a color, with a Q is a Boolean, and with an S or T is a string unless

183

defined otherwise. All other variables are real. However, Scriptor requires that all
variables be assigned and imposes no conventions on the first letter of any variable. The
requirement that all variables be defined is sometimes viewed by students as an
unnecessary burden on the programmer, but it makes code more readable and prevents
typing mistakes from dominating the debugging process. This requirement is also in
keeping with an object oriented structured environment, and quite different from Fortran
or Basic, early languages which allowed the use of undeclared variables.

Although you must use a Dim or Const statement to declare each variable, you do not
need to put these declarations at the top. We recommend you do so for clarity, but the
compiler only requires that you declare each variable somewhere within the program.
The one exception is a variable that is being redimensioned via the Redim statement.
The Redim statement is carried out during runtime, and thus its location in the program
is important and must precede any usage that depends upon the revised size. The debug
menu in Scriptor provides the option to display all of your public and main variables and
should be used frequently to monitor variable and confirm the correct type is declared.

Autostart Packages:

If you wish to share your program with other registered users, you should consider
making an autostart package. This is also the most reliable way of submitting a program
to your instructor if it requires external objects or data. This section provides directions
to make an autostart package. It is simple, and requires duplicating the Scriptor
environment to the extent necessary to run your project in a separate folder.

First, create a new folder and give it any name you desire. We will refer to this folder as
the package folder. Move your program inside the package folder and change the
filename of your program to one of the following:

autostart.txt (if you want the program to start up in the Main panel) or
automusicstart.txt (if you want the program to start up in the Music panel)

If your program needs to load a dataset prior to running, create a folder called "data
sets" and place the spreadsheet file inside the "data sets" folder. Change the name of the
spreadsheet file to "autodata.cet". The data set must have been created by using the
save command in the data set panel of Scriptor. However, you can change the name by
hand to " autodata.cet ".

If you have developed your program using Simple Mode, the instructions in this
paragraph can be skipped. If your program needs to read any classes, modules or
methods you must place copies of these text files inside new folders created inside and

184

named "Classes", "Modules" or "Methods". Make sure that you do not change the
names of the files from those used by your program to reference these external objects
and make sure that each file is placed in the correct folder.

If your program accesses pictures, include copies of these pictures inside a folder called
"user_pictures". If your program uses text files, include copies of these files inside a
folder called "user_files". Finally, if you would like to replace the Scriptor splash screen
with one of your own, create a jpg file and place it in the top level of the package folder
and call it splash.jpg. The image size should be roughly 600x 400, but the program will
scale this image to fit so experiment.

Finally, to test your package, place a copy of Scriptor inside and double click on it.
Scriptor should start up with your program loaded in the correct window. When you
press run, all of the resources should be loaded normally. All that you have done is
recreate a minimum environment with only the necessary resources present, but in
locations identical to those used in your primary Scriptor folder. When you share your
program with others, you should not send another copy of Scriptor along. If the
recipient does not have a registered version of Scriptor, the autostart package will not
run. If they do, all they will need to do is place a copy of Scriptor inside the folder and
double click on it. If you plan to email your package, the creative ability of email
programs to trash text files suggest that you should first make a zip, stuffit or suitable
archive prior to emailing the package.

Valid Operators:
standard math operators: +, -, *, /, Mod
exponentiation uses either the standard basic operator ^: xy = x^y
or the C-type pow(a, b) operator: xy = pow(x, y)
comparison operators: <, =, >, <=, >=, <>
logical operators: And, Not, Or.
comments begin using: ' (a single quote), // or REM*

*It is recommended that the student only use the ' or // markers to identify comments
and leave the REM keyword for the instructor to insert comments. The REM comments
are highlighted in bright orange to make them easy to find. They can also be removed
by selecting a menu item under Debug.

185

Data Types:
Integer (32-bit whole numbers in the range ± 2, 147, 483, 648)
Int64 (64-bit whole numbers in the range ± 9, 223, 372, 036, 854, 775, 807)
Single (32-bit positive or negative 7 digit real values between
 1.175494 x 10-38 and 3.402823 x 10+38)
Double (64-bit positive or negative 15-16 digit real values between
 2.2250738585072013 x 10-308 and 1.7976931348623157 x 10+308)
Boolean (1 bit: true, false)
String (ASCII characters of arbitrary length – see Appendix 3)
Color (32-bit color specification, e.g. RGB(255, 255, 255))
Const (any variable type, but once defined, cannot be changed via assignment in
program)
Currency (A 64-bit fixed point variable for accounting and business applications

involving money. The variable has 15 digits to the left of the decimal point and
3 digits to the right of the decimal. Only standard, non-transcendental
arithmetic, is allowed.)

Data types are declared using the Dim or Const statements as follows:
Dim aa as double, ii as integer, qq as Boolean, reddish as color
Const Pi=3.1415926535897932384626433832795

The compiler will figure out what data type to use for a constant, and in the above
example, it will use a double. However, only the first 16 significant digits will be
stored.

Arrays: Arrays can use any of these types and can by dynamically redimensioned in
the program using the Redim statement. All arrays have a zeroth element or elements.
That is, if the array a2 is dimension a2(1, 1) has four elements: a2(0, 0), a2(0, 1), a2(1,
0) and a2(1, 1).

186

Classes and Modules:

Modules provide a straightforward and flexible approach to providing a set of functions
and subroutines that are available to other objects outside of the module, but can
communicate between each other via private properties and private methods, if desired.
Modules are defined using the following syntax:

module module_name

public and private properties are declared here with the requirement that
each variable is declared using a single line dimension statement.
Each private property is shared by all the methods within the module, but
is invisible outside of the module. Public properties are available to all the code in your
application. Examples include:

private dim u(10, 10) as double // only available to code inside the module
private dim v(10, 10) as double // only available to code inside the module
public dim w(10) as double // available to all code
dim pwr(10) as integer // available to all code (default is public)

methods are defined next and are available outside of the module unless their name is
preceded with the word private. Thus

private sub a1(i as integer, byref x1() as double)
// this subroutine is available to only code within the module
// any properties declared are local to the subroutine
….
end sub

public sub a2(i as integer, byref x2() as double)
// this subroutine is available to all code
// any properties declared are local to the subroutine
….
end sub

function a3(i as integer, byref x3() as double) as double
// this function is available to all code (default is public)
// any properties declared are local to the function
….
end function

187

You cannot have code outside of functions or subroutines within a module. Modules
are never called by themselves but only serve as containers for properties and methods.

end module

The fact that the compiler requires that each variable be assigned in a separate (one-line)
dimension statement is an inconvenience, but is a restriction that can be justified based
on the significant amount of work that is required of the compiler when handling public
and private variables within both modules and classes (see below). But help is
available. You can collect all of your dimension statements into groups as normal and
then press the clean code menu item, and the dimension statements will be expanded
automatically. This saves time during the writing of your programs.

Classes are collections of methods that are available to objects outside of the class, but
which must be "called" by using a different syntax than is used to call methods declared
via modules. To use classes properly you need to learn three new programming terms,
instantiation, constructors and destructors. Instantiation refers to the process of creating
a “copy” of the class for use in your program. A variable is created to represent your
class using a standard dimension statement. Lets say your class is called class1. To use
this class, you would assign a variable to be of type class1 by using the statement dim
variable_name as class1. Then a copy of the class is created by using the statement
variable_name = new class1. This process is known as instantiation. Classes also need
constructors.

Constructors. You must add one or more methods to the class with the name
constructor. If two or more are present, they must have different types or numbers of
parameters. Multiple methods with the same name but different parameters are called
“overloaded”. These methods are run when the class is instantiated. The process of
instantiation uses the new keyword (a keyword that is sometimes called a constructor) to
create a new “instance” of the class within your program. You should think of an
“instance” as a copy but with properties defined by the constructor. Once created (or
instantiated) you have access to the methods that have been defined by your class. The
constructor is a critical part of instantiation because of the flexibility that it provides.
You can use the constructors to initialize the class to behave differently, or have
different properties. We use the term constructors because you can have more than one
method of the same name which is selected based on the way the new statement is
written. You can have multiple constructors and the constructors can be overloaded (see
below). Some classes also need to carry out a cleanup operation when the program no
longer needs them and they go out of scope. For this reason, classes have an additional
but optional subroutine which is called sub destructor(). This subroutine is
automatically called when the class is no longer available to the program. For example,
if a class has been instantiated within a subroutine, after exiting the subroutine the class

188

has gone out of scope and the class destructor subroutine is executed if present. The
destructor provides the programmer with an opportunity to do any necessary cleanup
operations or redimensioning of variables that were, for example, increased in size
within the constructor. However, the programmer need not worry about variables that
were local to the class. The memory allocated to these variables is returned to the
system automatically.

 Classes are powerful but complicated objects that new programmers should
avoid using until they have mastered modules and the concept of method overloading.
Modules are easier to use because all public methods defined within a module are
immediately available to the program just as if they had been defined within the main
program. The following example illustrates the definition and use of a simple class that
takes a number and multiplies it by π (the default) or a user assigned number. The
example also illustrates an important aspect of classes. When they are instantiated
(created by using the new keyword), the variable that you defined to be of type class1 is
“filled” with the code associated with that class. It will not change even if another
variable of type class1 is instantiated but instantiated using a different value for the
internal private variables. The following example illustrates this important, but rather
confusing aspect.

189

class class1 // creates a class called class1
 dim a1 as double // all variables are private to the class
 dim k as integer // each variable must be declared separately

 public function mba1(x as double) as double
 // public not required because public is the default
 return x*a1
 end function

 sub constructor()
 // constructor uses default initialization of pi
 a1=const_pi
 end sub

 sub constructor(a1set as double)
 // allows user to select other options during new assignment
 a1 = a1set
 end sub

 function a1val() as double
 // this function returns the value of a1
 // although there are no parameters, we need ()
 return a1
 end function

 sub destructor()
 // optional subroutine is executed when class goes out of scope
 end sub

end class

dim r1, a2 as double
dim blim, blam as class1

// create an instance of the class using default value of pi
blim = new class1
// create an instance of the class using a value of 4
blam = new class1(4)

r1 = 4.0
a2 = blim.mba1(r1)
print("a2 (based on blim.mba1) = "+str(a2))

190

print("blim.a1val = "+str(blim.a1val))

r1=4.0
a2 = blam.mba1(r1)
print("a2 (based on blam.mba1) = "+str(a2))
print("blam.a1val = "+str(blam.a1val))

// the following demonstrates that creating an instance of blam
// did not override the definition of blim. Once an instance is
// created, it remains invariant to new instances and constructors.
r1 = 4.0
a2 = blim.mba1(r1)
print("a2 (based on blim.mba1) = "+str(a2))
print("blim.a1val = "+str(blim.a1val))

// end program

The above program, when run, will generate the following output:

a2 (based on blim.mba1) = 12.56637
blim.a1val = 3.141593
a2 (based on blam.mba1) = 16
blam.a1val = 4
a2 (based on blim.mba1) = 12.56637
blim.a1val = 3.141593

Note that when you want to call a class method, you need to access that method by
using the syntax: class_variable.class_method where the class_variable is the variable
that was declared (instantiated) to represent the class in your program and the
class_method is the name of the method that resides within the class. If this seems like
a lot of work without any obvious advantage, it is important to understand that a class
provides some new flexibility. The flexibility is that when a class is instantiated, it can
be instantiated with various assignments made at the time of instantiation. You can
thus have many different variables representing the same class, but which have
functions that are altered at the time of assignment to suit your needs. The above is a
trivial example, designed to illustrate the concepts, but not the power, of this flexibility.
The class instantiation and construction syntax may appear to be arbitrarily complicated,
but once you get used to the syntax and explore the possibilities, you will appreciate the
new flexibility the class structure provides.

After the end class statement, which is the last statement of a class definition, you can
include a program that tests the class. You can also store this program with your class

191

definition. This test program is useful for testing and will be ignored if the class is
placed into any of the four windows of the Objects Panel. You can use the following
compiler directives to automatically load a method, module or class into the Objects
Panel windows. You must keep track to make sure you use a different window number
for each object.

|MS| //# load_class(class_filename.txt, iwindow) class file must be in classes folder
|MS| //# load_method(method_filename.txt, iwindow) method file must be in methods
folder
|MS| //# load_module(module_filename.txt, iwindow) module file must be in modules
folder
iwindow = 1, 2, 3 or 4 where the number identifies the object window destination. If
you set iwindow=0 when loading a module, then the lowest numbered empty window is
used. This only works with modules because of their special properties and capabilities.

|MS| Note that external methods accessed via the objects panel are only possible when
running in MathScriptor mode. However, if the above statements are present in a
Scriptor program, they will not generate an error if the program is registered, but will
generate a warning statement in the output text editfield.

Functions and Subroutines:

Function name(parameter list) As Type
… … …
Return value
End Function

Sub name(parameter list)
… … …
End Sub

A function must return a value (using the Return statement), and when referenced in
your program, the returned value must be assigned to the appropriate variable. You can
have multiple return statements, but once a return statement is encountered, the function
exits and returns the value. A subroutine cannot have a return statement, and if one
exists, the compiler will return an error. The parameter list allows two types of
variables to be passed: ByVal or ByRef. If passed by value (ByVal), the value of the
variable is copied into the local variable. If the value of the variable is modified inside
the subroutine, the calling variable remains unaltered. In contrast, if a variable is passed
by reference (ByRef), the memory location is passed and upon exit, if a change in the
value has occurred within the function or subroutine, the change is retained by the

192

variable upon exit. All parameters default to ByVal except for arrays, which are always
passed ByRef. Accordingly, you normally only need to indicate ByRef as in the
following example:

Sub sub_name(aa as double, ByRef bb as double, ic as integer, a2(,) as double)

In this example, the variables bb and the two dimensional array a2(,) are passed ByRef
while the variables aa and ic are passed ByVal. Again, it is important to remember that
arrays are always passed ByRef so if you change an array element within the subroutine,
that change will be preserved upon exit. If you want to pass an array Byval, you must
do so programmatically by making a copy and placing the copy in the parameter list.

You can also load a method (function or subroutine) into one of the Object Panel
windows using the following compiler directive:

//# load_method(method_filename.txt, iwindow)
iwindow = 1, 2, 3 or 4 where the number identifies the object window destination.

You cannot mix classes and methods or modules at the same time (have both
instantiated) nor can you have test code at the bottom of a method. You can mix
modules and methods.

A function can return an entire array if desired. For example, the following is an
example of a function that generates an identity matrix.

Function matidn2(nsize as integer) as double(,)
 dim i, j as integer
 dim a2(1, 1) as double
 redim a2(nsize, nsize)
 for i=0 to nsize
 for j=0 to nsize
 a2(i, j)=0.0
 next
 a2(i, i)=1.0
 next
 return a2() // note a2() is used, not a2(,)
end function

Following is a short section of code that calls this function and demonstrates two
important aspects of calling functions which return arrays. First, not only is the array
elements returned, including the (0, 0;0, 1;1, 0 elements even if not assigned), but the
array is redimensioned to correspond to the dimension that is assigned within the

193

function. Second, the dimension of the array is not reflected in the return statement
(above) or the assignment statement in line 4 below.

dim a(10, 10) as double
dim n, n1 as integer
n1=4
a()=matidn2(n1) // note a() is used, not a(,)
n=ubound(a(), 1)
set_text_style("Courier", 12, rgb(0, 0, 0), false, false)
print(matrix_print(a(), n, n, n))

Method Overloading:

Scriptor allows functions and subroutines to be overloaded, which allows two or more
methods to be defined with the same name but with different numbers or types of
parameters. This capability provides important flexibility in programming and usage.
The flexibility is demonstrated in the following example of a function max1, which can
be called with two or three doubles or two string variable representations of numbers.

function max1(a as double, b as double) as double
 return max(a, b)
end function

function max1(s1 as string, s2 as string) as double
 return max(value(s1), value(s2))
end function

function max1(a as double, b as double, c as double) as double
return max(a, max(b, c))
end function

Loops:

Scriptor provides three types of loops, using the combinations: For…Next, Do…Loop
and While…Wend. The most useful of these options is the For…Next loop.

For i = istart to iend step idelta
if testcondition then exit
Next

For i = istart downto iend step idelta
if testcondition then exit
Next

194

where the term testcondition is used to indicate any variable or expression that evaluates
true or false. The conditional exit statement is optional (see below). The Next
statement increments the value of i by idelta, which must be a positive value. Thus, if
you want to decrement, you must use the downto statement. The step idelta is optional
and if the step parameter is not present, an increment of +1 (or –1 with downto) is
assumed. The For..Next loop can also operate on floating point numbers where rdelta
can be any positive real number. The if testcondition then exit statement is available in
all of the Scriptor loops, and can be used to exit the loop whenever the testcondition
evaluates as true.

For r = rstart to rend step rdelta
Next

For r = rstart downto rend step rdelta
Next

The other two loops are more useful in situations where a test is to be carried out during
the looping process and when the test condition has been satisfied, the loop is excited.
When using the do loop, you have the option of testing before, during or after the loop
has been executed:

Do Until testcondition
Loop

Do
Loop Until testcondition

Do
if testcondition then exit
Loop

Do Until testcondition1
if testcondition2 then exit
Loop Until testcondition3

The first three examples represent the most common usage, but it is valid and sometimes
necessary to include conditional tests before, during and after the loop is executed as
shown in the fourth example. Each testcondition can be different. The While…Wend
statement provides an addition looping option that provides no additional flexibility but
has the modest advantage of providing a more natural resonance with the English
language.

195

While testcondition
Wend

While testcondition1
if testcondition2 then exit
Wend

Here, the test condition is only available at the beginning of the loop but you do have
the option of exiting at any point in the loop based on the conditional exit statement.

Conditionals:

The If statement coupled with the Else or Elseif statements is the most commonly used
conditional and exists in one form, or another, in all high level languages. The one-liner
form of this statement is,

If testcondition1 Then statement1 Else statement2

where statement1 is executed only if testcondition1 evaluates to true and statement2 is
executed only if testcondition1 evaluates to false. The multiline approach is often easier
to read and provides for additional options.

if testcondition1 then
 statements in here are executed if testcondition1 is true
Elseif testcondition2 then
 statements in here are executed if testcondition2 is true
 and testcondition1 was false when evaluated
Else
 these statements are only executed if all previous test conditions were false
End if

Although only one ElseIf statement is shown, you can have as many ElseIf sections as
desired. It is important to keep in mind that once any of the test condition has evaluated
to be true, the corresponding code is executed and the If statement exits to the line
following the End If. A high level conditional is also provided by the Select Case
statement, which is valuable in providing a highly readable but significantly slower
version of the multiline conditional.

Select Case testexpression
Case testvalue1
statements in here are evaluated if testvalue1=testexpression is true

196

Case testvalue2
statements in here are evaluated if testvalue2=testexpression is true
Case first_value To second_value
statements in here are evaluated if testexpression is in the range specified
Case is testvalue2
statements in here are evaluated if testvalue2 has an inequality
relative to testexpression that is true (i.e. <, <=, >, >= as specified)
Else
statements in here are evaluated if none of the above tests were true
End Select

Input and Output Functions:

Clear_Text_Output(ioption) Clears all of the text in 0(both), 1(Main Panel), 2(Text

Panel)
Input(Prompt as string) as string Retrieves input from the user with an optional

prompt
Print(s0) Sends string s0 to both the Main and Text panel output windows. If running

in the Music Panel, this statement also sends output to the Music Output text
buffer.

Format(number, n, m) as string Formats number into an n digit number with m digits
after the decimal point.

Format(number, string_format) as string Formats output using rules discussed below
Show_progress_bar(ip) Displays the progress bar for ip=0(start) to ip=100(finished).
Show_progress_line(s0 [, fontname, fontsize]) Displays the string s0 in the input line

using the default fontname and fontsize, but the user can override the defaults by
explicitly specifying both the fontname and fontsize.

String_speak(Text, Qnow) Speaks the Text and if Qnow is true, immediately
interrupts.

Not included in the above examples are the numerous graphics input and output
capabilities that are discussed below.

Functions and Reserved Variables:

Arguments or parameters are defined using the conventions discussed at the top of this
chapter: a variable that begins with I, J, K, L, M or N is an integer, with a Q is a
Boolean and with an S is a string unless specified otherwise. All other variables are
real. When an array is used, all single dimensioned array labels end in 1 [e.g. x1()] and
two-dimensional arrays (or matrices) end in 2 [e.g. a2()]. RGB color values ired, igreen
and iblue are integers constrained from 0 (off) to 255 (max). In contrast, all parameters

197

for CMY and HSV are real numbers between 0 and 1.0. If the variable is called color,
then the color can be specified using RGB, CMY or HSV methods. If the variable is
called buffer, then it refers to the internal graphics buffer. When multiple buffers are
created, all operations default to buffer 1, which is the upper left-hand buffer. You can
then copy this buffer to any of the other buffers by using the copy_buffer_to_buffer
routine.

Keep in mind that Scriptor automatically upgrades variables so that you can often replace
a double with an integer, and the integer will be converted to a double in the process of
transferring the parameters to the subroutine. Thus, although sin(x) expects a double, it
will work just fine when an integer parameter is encountered. That is, sin(i), where i is
defined as an integer and assigned a value of 12, will generate a valid result (-
0.5365729).

|MS| Arbitrary Precision Arithmetic

MathScriptor versions 1.8.2 and above include the capability of doing arbitrary precision
(arprec) arithmetic as well as string based complex arithmetic. The precision of arprec
arithmetic is controlled by the command arprec_set_precision(idigits), where idigits is
equal to the number of digits of precision in the real number, not including those digits
in the exponent. An added benefit of using arprec arithmetic is that exponents as large
as ±58, 000, 000 are allowed.

Arbitrary precision functions have string parameters and return strings. These functions
also work on complex numbers identified by separating the real and imaginary parts
with a comma (do not include I, it is understood). The following functions are arprec
savvy: plus(s1, s2), minus(s1, s2), mult(s1, s2), div(s1, s2), real(s1), imag(s1), pow(s1,
s2), log(s1), loggamma(s1), exp(s1), abs(s1), sin(s1), asin(s1), cos(s1), acos(s1), tan(s1),
atan(s1), sinh(s1), asinh(s1), cosh(s1), acosh(s1), tanh(s1), atanh(s1).

Output precision can be rounded to a lower precision by using the function
round_to_precision(s1, ndigits). This function returns a string which can be inserted
directly into a Print statement. Alternatively, one can format arprec strings by using the
function Format(s1, nwidth, ndecimal), which also works on complex numbers where
the total width of the output string equals 2*nwidth+3 for comma delimiter.

There are three comparison functions that can be used with arprec strings. The first is
the standard equals (“=”) which when used in a conditional statement returns true if two
arprec strings are identical. This function, when combined with the round_to_precision
function, allows identity to be established at lower precision if necessary. The two
arprec specific functions, Q_greater_than(s1, s2) and Q_less_than(s1, s2), return true

198

if s1 is greater than, or less than, s2. These two functions will even work if s1 and s2
were calculated at different precision.

The flexibility and power provided by arbitrary precision arithmetic comes with a price.
The most significant cost is in CPU time as a 32 digit arprec multiplication takes 4550
times longer than a 16 digit precision double multiplication. The reason for this
significant difference is that double precision arithmetic can take advantage of floating
point hardware that is designed to manipulate double precision numbers. In contrast, all
of the arprec math must be done in software and despite use of extensive use of
processor floating point arithmetic, arprec math invariably requires thousands of
processor cycles. Additional latency is associated with the use of strings to receive and
return the results.

The following table provides some typical execution times in microseconds for a 2.33
GHz Intel Core-2 Duo Processor:

Operation double (16 digits) arprec (32 digits) arprec (128 digits)
addition [a+b or plus(s1, s2)] 0.01 89 225
multiplication [a*b or mult(s1, s2)] 0.02 91 235
division [/ or div(s1, s2)] 0.03 85 222
trigonometry [sin(x) or sin(s1)] 0.06 135 563
logarithms [log(x) or log(s1)] 0.08 181 1283
complex addition 77 112 350
complex multiplication 83 119 363
complex sin 155 250 1156
complex log 171 274 1649

The reason the 16 digit complex number manipulation is significantly more CPU
intensive than the other 16-digit calculations is that all complex number operations are
done using the arprec functions, even if the precision has been set to only 16 digits.

Despite the increased computation time associated with arprec math, there are times
when high precision arithmetic is needed. Salient examples include situations where
the relatively small IEEE exponent range of ±308 is inadequate for a given calculation.
This limitation is often a problem in physics, chemistry and engineering calculations.
Overflow or underflow problems are easily eliminated by switching to arprec arithmetic.
Cryptography, numerical integration, perturbation theory and Monte-Carlo methods also
benefit significantly from expanded precision. It is also useful to do a sample
calculation using arbitrary precision arithmetic to verify that truncation error is not a
problem, and then revert to double precision after verifying that it is adequate.

199

|MS| Compilation

When running in MathScriptor, it is possible to compile your program into an internal
code format that provides a more compact program and often allows your program to
run faster. Compiled programs carry the extension .mcc, which stands for MathScriptor
Compiled Code. Code that is compiled in MathScriptor can be run within Scriptor even if
functions reserved to the MathScriptor language are used. Your instructor may distribute
problem sets that have been compiled for the sole reason of providing a demonstration
of what the correct output should look like while not giving away how to write the
program to create that output. You cannot convert compiled code back into readable
source code. For this reason it is critical that you always save your original source code.
To provide backup, each time you compile, your source code is saved into a folder
called "saved_source_code" which is created by MathScriptor within your Programs
folder. If you do a lot of compiling this folder can get fairly large and at some point it
may be wise to copy this folder to a backup medium and remove the contents. The code
is listed not by the name of the program, but by a unique identifier name that includes
the date (or to be precise, the date stored as the current date within the computers
operating system). For example, if you compile a program on January 8, 2007 the
source code will be saved with a filename of s2007_01_08a1.txt. The last two
characters increment from a1 to z9 allowing for 234 source code backup saves in a
given day. If you need more than that, you are probably operating under the
misconception that you need to convert your program into a compiled version to run the
program. This is true, but simply pressing the Run button compiles and runs the
program while leaving the source code in the programming window. This is the
recommended mode. The Compile menu item is for generating compiled programs for
distribution to others when you wish to prevent the recipient from seeing your source
code, or you want to make sure a Scriptor user can run the program. Compilation will
also allow you to optimize your compiled program so that it runs faster provided you are
using an LLVM or XS version of Scriptor and operating in MathScriptor mode.

Internal Methods and Reserved Keywords

The following is a complete list of all the internal methods and keywords associated
with Scriptor and MathScriptor. Methods only available in MathScriptor mode are
preceded with a |MS| symbol. If a parameter, set of parameters or keyword is enclosed
in brackets, it is optional or should be used only under certain conditions, which are
specified. All trigonometric functions in Scriptor operate on (or in the case of the arc
functions return) radians. To convert degrees to radians, multiply degrees by
const_degree. To convert radians to degrees, divide radians by const_degree.

200

// Program name: my_program_name.txt First line of a program- this line will tell
the save command the name to use when saving the program. This example will cause
"my_program_name.txt" to be the suggested file name when saving the program to the
programs folder. One always have the option to change this name during the save
dialogue and change the location where the program is saved. If the program names
starts with the phrase "Template_", then the program is saved into the Templates folder.

// end program The last statement of a program. This statement is automatically
generated during either a Precompile (under Debug menu) or during a Structure and
Mark Program operation (under the Debug menu). If all structural elements (loops,
conditionals, etc.) of the program are not complete (satisfied) prior to this statement, a
compiler error is generated and the program will not be run.

|MS| //# load_class(class_filename.txt, iwindow) load the class in file
class_filename.txt into the iwindow editfield within the objects panel; Class files must
be in classes folder; make sure there is a single space between # and load_class

|MS| //# load_method(method_filename.txt, iwindow) load the method or set of
methods in file method_filename.txt into the iwindow editfield within the objects
panel;Method or method set files must be in methods folder; make sure there is a single
space between # and load_method

|MS| //# load_module(module_filename.txt, iwindow) load the module in file
module_filename.txt into the iwindow editfield within the objects panel; Module files
must be in modules folder; make sure there is a single space between # and load_module

|MS| #pragma directive [boolean] sets or clears compiler directives as listed below.
Those that require a Boolean are listed with the Boolean as well as the meaning. Note
that this statement is not preceded by a double slash (//).

BackgroundTasks True (enables yielding to background threads, which is the default)
BackgroundTasks False (disables yielding to background threads and speeds up

program)
DisableBackgroundTasks (disables yielding to background threads and speeds up

program)
BoundsChecking True (enables monitoring of array subscripts to trap out_of_bounds

exceptions, the default)
BoundsChecking False (disables monitoring of array subscripts, and speeds up

program)
DisableBoundsChecking (disables monitoring of array subscripts, and speeds up

program)
NilObjectChecking True (enables trapping of nil objects prior to usage, which is the

default)

201

NilObjectChecking False (disables trapping of nil objects prior to usage, and speeds up
program)

StackOverflowChecking True (enables monitoring of the stack size to prevent
overflow, default)

StackOverflowChecking False (disables monitoring of the stack size, and speeds up
program)

Abs(x) as double returns the absolute value of the argument. This function, like most

of the other standard math functions is arprec savvy which means you can feed it
a string representation of a real or complex number, and it will operate in arprec
mode and return a string representation of the absolute value.

Acos(x) as double returns the arccosine of the argument. This function is arprec_savvy,

which means x can also be a string representation of a numerical value, either
real or complex. Complex numbers are two string numbers separated by a
comma (e.g. "1.234, 3.456" which represents 1.234 + 3.456I).

Acosh(x) as double returns the inverse of the hyperbolic cosine, cosh(x).

Active_canvas as integer returns the currently visible canvas (1 in Main, 2 in Graphics
panel or 3 in Music panel.) This variable is useful when writing programs which
are to be run in two or more different panels.

|MS| arprec_degree as string returns an arprec string representing the number of

radians per degree with a precision of idigits as determined by the most recent
arprec_set_precision(idigits). The |MS| label on this and subsequent statements
indicates that it is only available in MathScriptor mode.

|MS| arprec_e as string returns an arprec string representing the value of the
mathematical constant, e = 2.71828.., with a precision of idigits as determined
by the most recent arprec_set_precision(idigits).

|MS| arprec_euler as string returns Euler’s constant (= 0.5772156649…) to an
arbitrary precision, but with a maximum accuracy of 1000 digits.

|MS| arprec_factorial(n as integer) as string returns an arprec string equal to the
factorial of n, where n is a positive integer less than or equal to 8, 600, 000. This
function saves results from previous evaluations to speed subsequent
calculations.

|MS| arprec_pi as string returns the value of π as an arprec string. The number of
significant digits is limited only by memory and is set by
arprec_set_precision(idigits) (see below).

202

|MS| arprec_precision as integer returns the current precision of arprec calculations.
Setting this variable has no effect. Use arprec_set_precision to set the precision.

|MS| arprec_random_float([seed string]) as string returns a random floating point
number between 0 and 1 as an arprec string. The optional seed string, if
included, will reseed the generator. The seeding process should only be done
once, and a given seed will always generate an identical set of random numbers.

|MS| arprec_random_integer(ndigits) as string returns a random integer of length
ndigits as an arprec string.

|MS| arprec_set_precision(idigits) sets the precision of the all subsequent arprec

arithmetic in terms of the number of significant digits prior to the exponent. The
choice of precision impacts the time necessary for an operation as shown above
for selected operations. In general, complex math doubles the time of operations
on single arguments and quadruples the time of operations involving two
arguments (i.e. mult, div, plus, minus).

|MS| arprec_variational_min(sx(), sy(), n) as string returns the value of x for which y
is a minimum for three (n=3) or four (n=4) pairs of x, y data points. If the
minimum is outside the range of values defined by the data pairs, the x value on
the edge that has the smallest y value is returned. The math is variational which
means the function returns x for which the derivative dy/dx=0. Best results and
highest computational speed are realized by using n=3, where the central (2nd)
pair [sx(2), sy(2)] are close to the minimum.

203

|MS| arprec_zeta_critical_root(n) as string returns an arprec string identical to the
zeta_critical_root(n), but to the designated arprec precision or 64 digit,
whichever is smaller. If the arprec precision is greater than 64 digits, this
function returns exactly 64 digits (i.e. zero padding is not done). At present, the
maximum value of n is 60, 000 and requests for roots higher than 60, 000 returns
0 [arprec_zeta_critical_root(>60000) = 0]. The largest available root is returned
by the function arprec_zeta_critical_root(-1). By convention, the 0th root is set
equal to 1 even though no such root exists.

Array(comma delimited list of any type variable) as variant one-dimensional array

transfers the comma delimited set of variables into a one-dimensional array of
the appropriate type starting at the 0th element. Usage example: a1 = array(1.0,
2.0, 3.0, 4.0), where a1 is a one-dimensional double array. If you want to start
at the array(1) element, simply insert a null value (0, 0., or "") in the first
position as shown in the following string example: string_array = array("", s1,
s2, s3, ...). The recipient array is dynamically redimensioned to be of the exact
size as required to hold the data. The compiler checks the first element of the
comma delimited list and verifies that it is of exactly the correct type as the one-
dimensional array. Thus, if the target is a double array, make sure the first
element has a decimal point so the compiler doesn't assign it as an integer.
Likewise, if it is an integer, make sure there is no decimal point. As of version
1.8.2, this function can also handle a comma delimited list of colors.

Asc(s0) as integer returns the ASCII value of the first character of the string s0.

AscB(s0) as integer returns the ASCII value of the first byte of the string s0, which is
also the first character for a majority of strings. However, if the string represents
Chinese or Japanese glyphs, this function returns nonsense. The reason this
function exists is speed. If one knows that the string is a standard Roman
character string, this function can be used to enhance execution speed by factors
of 3-10.

Asin(x) as double returns the arcsine of the argument.

Asinh(x) as double returns the inverse of the hyperbolic sine, sinh(x).

Assigns, when placed in front of the last variable declared in a list of subroutine
parameters, indicates that the variable is assigned by using an equals sign (see Section
2.7.1).

Atan(x) as double returns the arctangent of the argument.

Atan2(x, y) as double returns the arctangent of the point whose coordinates are x and y.
This function is valuable because it provides access to all four quadrants.

Atanh(x) as double returns the inverse of the hyperbolic tangent, tanh(x).

204

Atomic_orbital_list is a string which contains a comma delimited list of the atomic
orbitals utilized in the most recent SCF calculation in order of appearance in the
LCAO expansion. For formaldehyde (O, C, H, H) the variable returns “O1(2s),
O1(2px), O1(2py), O1(2pz), C2(2s), C2(2px), C2(2py), C2(2pz), H3(1s),
H4(1s)”. If you wish this list to be loaded into a string array, orbs(1..norbs),
execute orbs=string_split(aromic_orbital_list, ”, ”).

Atom_properties_cndo(atomic_number, property_letter_code, n1, byref atom_name)
as double returns an individual atom property based on the CNDO/2
parameterization. The n1 integer designates the orbital: 1(s), 2(p) or 3(d). This
function returns the letter representing the atom in the byref parameter
atom_name. The property_letter_code options are as follows:
A valence state electron affinity in eV (Ass , App or Add; n1=1, 2, 3)
B β0 (atomic bonding parameter) in eV
E (Iµ + Aµ)/2 for s, p or d (n1=1, 2, 3) in eV
G gamma (one center repulsion integral) in eV
I valence state ionization potential in eV (Iss , Ipp or Idd; n1=1, 2, 3)
M Slater Exponent (ξ)
S put all this information into the spreadsheet (see example below).
U Uss, Upp or Udd (n1=1, 2, 3) in eV
Z valence core charge (not a parameter but a fact of atomic structure)

The reason this method is called atom_properties_cndo() is because none of the
additional INDO parameters are generated. The INDO parameters are fixed by
evaluation of the slater integrals and cannot be modified. Set
Q_use_external_parameters to true to read the parameterization from the spreadsheet.
The program only reads the parameters in the columns 3-8. An example of the
spreadsheet printout is shown below. The single line statement atom_properties_cndo(i,
”S”, n1, s1) where all but the second parameter are dummies.

205

Bessel(n, x) as double returns Jn(x), the value of the Bessel function of the first kind for
argument x and integer values of n. Very fast algorithms are used for Bessel(0,
x) and Bessel(1, x) calculations so that this function can be used for efficient
Fourier transform apodization.

Bessel_general(itype, norder, x, byref stype) as double
returns the value (or zero point) of various Bessel functions for itype values as follows:
itype=1 Bessel J function of order = norder for argument = x
itype=2 Bessel Y function of order = norder for argument = x
itype=3 Bessel L function of order = norder for argument = x
itype=4 Bessel K function of order = norder for argument = x
itype=5 returns the x value for which Bessel J function of order = norder equals zero
itype=6 returns the x value for which Bessel Y function of order = norder equals zero
itype=7 Spherical Bessel J function of order = norder for argument = x
itype=8 Spherical Bessel Y function of order = norder for argument = x
The byref variable stype returns a string description of the Bessel function followed by

the string equivalent in full precision.

Bin(i) as string returns the binary equivalent of the 32 bit integer i in a string. bin(15) =
"1111", oct(15) = "17", hex(15) = "F"; bin(127) = "1111111", oct(127) = "177",
hex(127) = "7F". If you want to enter an integer using a binary number use i =
ivalue("&b1111111"). The largest argument is 2147483647 which returns
bin(2147483647) = “1111111111111111111111111111111”

Binary_file_read(filepath, [filecontents] or [ii, nth] or [aa, nth] or [ia(), n1] or [a1(),
n1] or [a2(), n1, n2]) as integer read the individual value or multiple values in
the binary file designated by filepath. The filepath represents a path within the
same folder as mathscriptor. For example, filepath="data_sets:bf12" reads the
data in the file "bf12" inside the folder "data_sets". This routine can read a
string, an integer array, or a double in the form of a one-dimensional array
a1(0..n1) or a two-dimensional array a2(0..n1, 0..n2). Returns the file length in
bytes (0=failure). For the one dimensional integer or double arrays, you have
the option of only reading the nth value by replacing the array with a non-array
variable and using n1 to select the nth array element.

Binary_file_write(filepath, [filecontents] or [ii, nth] or [aa, nth] or [ia(), n1] or [a1(),
n1] or [a2(), n1, n2]) as boolean write the data in binary format to a disk file
designated by the string filepath, where filepath references paths within the same
folder as the program. For example, filepath="data_sets\bf12" stores the data in
the file bf12 inside the folder "data_sets". Returns true if the operation was
successful.

206

Binomial(n, k) as double returns the binomial coefficient for n over k [=n!/(k!(n-k)!)]
where n>=k>=0.

BitwiseAnd(i, j) as integer returns the bitwise AND of the two arguments.
For example:
bitwiseand(5, 3) = 1
bitwiseor(5, 3) = 7
bitwisexor(5, 3) = 6
bin(5)=0101 & bin(3)=0011

BitwiseOr(i, j) as integer returns the bitwise OR of the two arguments.
example: bitwiseor(5, 3) = 7

BitwiseXor(i, j) as integer returns the bitwise XOR of the two arguments.
example: bitwisexor(5, 3) = 6

Buffer_Backcolor(ired, igreen, iblue) sets the background color of the buffer.

Buffer_Background_color = color alternative method to set the buffer backcolor.

Buffer_clear This statement clears the buffer to buffer_background_color. If multiple
buffers have been created, this statement only clears buffer 1. The default
buffer_background_color is pure white.

Buffer_copy_to_buffer(itarget) copy buffer 1 to itarget=2, 3, 4...<= nbuffers.

Buffer_copy_to_buffer(isource, itarget) copy buffer isource to buffer itarget.

207

Buffer_copy_to_canvas(icanvas, [ioption]) icanvas=1, 2, 3 or active_canvas;
ioption=0, 1, 2. if ioption is left out, then a pixel-to-pixel fast copy is done
starting at upper left (0, 0). If present, scaling is done based on ioption where
ioption =0 (center graphic and preserve aspect ratio), 1 (upper left, preserve
aspect ratio), 2 (fill completely and ignore aspect ratio). icanvas=1(main),
2(graphics), 3(music).

Buffer_copy_to_picture(ipicture) copies the contents of the entire buffer into picture
slot ipicture. If ipicture has not been created, it will be created and the size of
ipicture will be set equal to the size of the buffer.

Buffer_create(ioption, iwidth, iheight) creates a single buffer of size iwidth by iheight

with a white background (ioption=0) or a colored background (ioption=1). If the
latter, assign the color using graphics_background_color prior to this statement.

Buffer_create_multiple(nbuffers, ioption, iwidth, iheight) as above but creates multiple

buffers each of which has a size of iwidth and iheight with a white (ioption=0) or
colored (ioption=1) background. The sign of nbuffers determines placement:

 2 (1 2 --- left right); -2 (1 above 2 -- up down) ;
 3 (1 2 3 --- left middle right) ; -3 (1 above 2 above 3 ---- top middle bottom) ;
 4 (1 2 3 4 --- left to right in line) ; -4 (1 2 on top, 3 4 underneath);
 6 or -6 (1 2 3 on top 4 5 6 underneath) ;
 9 or -9 (1 2 3 on top 4 5 6 in middle and 7 8 9 on bottom);

40 (1 2 3 4 --- top to bottom).

buffer_draw_dashed(x0, y0, x1, y1, L1, S1, L2, S2, line_thickness, dashcolor) draw a

dashed line from x0, y0 to x1, y1 of width line_thickness and color dash_color.
The dash lengths are L1 and L2 and the intervening spaces are S1 and S2. For a
simple dash, L1=S1=L2=S2. All values are in buffer pixels.

Buffer_draw_odometer(value, ndigits, ndecimal, ix, iy, relative_size) draw an

odometer into the buffer at position ix, iy, value = the value to be drawn in the
odometer window (double), ndigits = total number of digits to display including
the decimal place, which takes up one of the digit slots, ndecimal = number of
digits to be displayed to the right of the decimal point, ix, iy are the x and y
positions of the upper left corner of the odometer within the buffer window and
relative_size gives the relative size of the odometer, 1.0=full size, 0.5=half size,
etc.

208

Buffer_fill_from_array(a2(,)) fill the buffer from the double array a2(nx, ny) where
nx<=buffer_width and ny<=buffer_height. Each value ranges from 0(black) to
1(white).

Buffer_fill_from_arrays(ired(), igreen(), iblue()) fill the buffer from the three integer

arrays where each color is represented by a two-dimensional array as in
ired(1..nx, 1..ny) where nx<=buffer_width and ny<=buffer_height. Each value
ranges from 0 to 255.

Buffer_flip_buffers(i, j) flips the graphics contents of any two buffers within the range

of buffers created using buffer_create_multiple.

Buffer_gaussian_blur(ilevel) carries out a high-quality, but slow, Gaussian blur on

the buffer (or buffer 1 if multiple buffers are present). [A quick but less accurate
blur function is available in buffer_quick_blur (see below).]

Buffer_height as integer returns the current height of the buffer in pixels. If a multiple

panel buffer has been created, this variable returns the height of the individual
buffer. Note that when there are multiple buffers, each buffer is the same size.

Buffer_pixel(ix, iy) assigns as color or as color reads or sets the color at buffer pixel

ix, iy.

Buffer_pixel_blend(kx, ky, opacity [, iblendtype])=blend_color. blends the
blend_color into the color found at pixel location kx, ky based on the opacity of the
blend_color (which is on top) and the optional integer, iblendtype (0-6):
 0 or 1 = normal additive transparency (RGB based, simulates colored transparent

glass, default)
 2 = subtractive transparency (CMY based) (simulates paint)

3 = hue based transparency (HSV based)
 4 = additive transparency with enhanced lightening
 5 = additive transparency with enhanced darkening
 6 = moiré (artistic, textured) blend

Buffer_quick_blur(ilevel) carries out a high-speed, anti-aliased blur on the buffer (or

buffer 1 if multiple buffers are present). Algorithm uses the internal graphics
hardware. Not as accurate as buffer_gaussian_blur, but 100 times faster with
adequate results for most applications.

209

Buffer_rotate(degrees [, fillcolor] or [, ix0, iy0]) rotate the picture in the buffer
counterclockwise (degrees>0) or clockwise(degrees<0). If fillcolor is present,
regions outside the rotated graphic are filled with this color. Rotation is about the
center of the buffer if the second parameter is the fill color or around ix0, iy0 if
the latter two integer variables are passed. Rotation around the center with a
fillcolor is significantly faster.

Buffer_save_to_jpeg(filename as string) as boolean saves the buffer (of buffer 1 of a

multiple buffer) to the user_pictures folder using the filename that is passed as a
parameter with the extension, .jpg, added (i.e. filename.jpg). One can store a
series of pictures into a folder inside the user_pictures folder by including the
folder name in the filename, as shown below for Mac OSX:

filename="wavepackets:wave"+str(n)+str(v2)+format(ifile, "000")+".jpg"

 where the individual files are named “wave001.jpg”, “wave002.jpg” and are all

place inside the folder wavepackets. This folder MUST be created prior to
calling this method. This function will not create a folder. This works on other
platforms, but the Max OSX separator “:” needs to be replaced with one
appropriate for the operating system (i.e. “\” on Windows XP). This function
requires that QuickTime (either Standard or Pro) be installed on the computer.
Quicktime Standard is free and is available from the Apple Web Site
(http://www.apple.com/quicktime/download/).

buffer_save_to_photoshop(fname) as boolean (Mac Only) Copy the current buffer to a

photoshop file inside user_pictures with the path and filename given by the
string fname. Returns true if successful.

buffer_save_to_tiff(filename) as boolean Save the buffer (or buffer 1 of a multiple

buffer) to the user_pictures folder as an uncompressed tiff file with name
filename.tif. Returns true if successful.

210

Buffer_to_array(a2(), ioption) converts the graphics pixels in the buffer to
corresponding numerical values placed in the two-dimensional double array
a2(nx, ny) with dimensions set by the size of buffer based on ioption, which
determines how the RGB color channels are weighted:

 ioption=1, then red is given double the weight;
ioption=2, then green is given double the weight;
ioption=3, then blue is given double the weight;
ioption=4 use Adobe standard (red*0.7, blue*0.89, green*0.41);
ioption=5 use grey scale;
ioption=6, then use only the red channel;
ioption=7, then use only the green channel;
ioption=8, then use only the blue channel;
if ioption is negative, the picture is inverted prior to extraction.

Buffer_to_arrays((ired(), igreen(), iblue()) copy the buffer into the three arrays where

each color is represented by a two-dimensional integer array as in
ired(1..buffer_width, 1..buffer_height). The three integer arrays are
redimensioned to the size of the buffer. The values range from 0 to 255.

Buffer_trim(nleft, nright, ntop, nbottom) reduce the size of the buffer by cropping the
buffer from the left, right, top and bottom by the number of pixels specified.

Buffer_width as integer returns the current width of the buffer in pixels. If a multiple

panel buffer is created, this returns the width of the individual panel.

Buffer_write_paintbrush(ix, iy, ired, igreen, iblue) the pixel at position ix, iy and all

adjacent pixels of the same color are replaced with the color RGB(ired, igreen,
iblue)

ByRef when preceding a parameter, establishes a call by reference. This means that a

pointer to the variable being passed is used to directly access that variable. Any
changes in the parameter inside the method will alter the value of the variable
passed. Note that all arrays are called ByRef under all circumstances.

ByVal when preceding a parameter, establishes a call by value. This means the value is
passed to a local variable, and if the local variable is changes inside the method,
the passed variable remains unchanged. If used in front of an array variable, it is
ignored as all arrays are automatically called by reference.

Call this keyword, when placed in front of a function call, indicates the return variable

is to be ignored.

211

Canvas_clear(icanvas) clears the canvas to pure white. Should be used prior to calling
buffer_copy_to_canvas() if one is not filling the canvas. However, if one is
generating a dynamic movie involving repeated buffer_copy_to_canvas() calls,
one should avoid using canvas_clear except at the very beginning of the process.
This statement causes flicker on Windows platforms. Repeated use of this
statement slows down graphics on both Windows and Macintosh platforms. This
statement is deprecated. It is better to clear the canvas by creating a buffer of the
same size as the canvas and then doing a copy_buffer_to_canvas(..).

Canvas_height(icanvas) as integer height of canvas specified by icanvas= 0 (buffer), 1
(small canvas in main), 2 (large canvas in graphics).

Canvas_update (update_time) requests activation of the paint event of the visible

canvas, and hands time over to the event loop to carry out the canvas update.
Update_time is in milliseconds, and for most applications, a value between 10
and 30 will suffice. This number will need to be increased for slower computers.
The user should make sure that buffer_copy_to_canvas() has been executed prior
to calling canvas_update. This method is rarely needed as the computer will
usually automatically update the canvas automatically in the background.

Canvas_width(icanvas) as integer width of canvas specified by icanvas = 0 (buffer), 1
(small canvas in main), 2 (large canvas in graphics).

Case [is] part of the Select Case statement. Use "Case is" before < or > conditionals.
select case expression
case 1
case 2, 3, 4
case 5 to 8
case 9 to 11, 15, 19
case is [<[=]][>[=]] value
...
else
...
end select

Ceil(x) as double rounds x up to the nearest integer (but returns it as a double)
if x=4.952, floor(x)=4, ceil(x)=5
if x=-4.95, floor(x)=-5, ceil(x)=-4
if x=6, floor(x)=6, ceil(x)=6

212

Chebyshev(n, x) as double returns the numerical value of the nth Chebyshev
polynomial for argument x. The first possible value of n is 1, not zero, so the
“zeroth” Chebyshev polynomial is referenced by n=1. The first seven
polynomials are listed below:

Check_and_clear_input as string Each time this function is called, it returns the

character equivalent of the keyboard key that was pressed. If the string is empty,
a key may have been pressed, but does not translate into a valid character. The
carriage return "<CR>" and backspace or delete keys "<BS>" and escape
"<ESC>" are returned using the indicated bra-ket abbreviations. All other non-
printing characters generate null strings. The function is cleared each time it is
called so if a new character is found, then a unique key event was trapped. On
Windows, it is more reliable to use the key_down_ascii_value and only use this
command to update the value of key_down_ascii_value.

Check_for_mouse_action(imilliseconds, x1, x2, y1, y2) as Boolean returns true when

the mouse has been pressed and released within a rectangle defined by x1, y1
and x2, y2 in the graphics canvas within the graphics panel. The variable
imilliseconds gives the number of millisecond latency allowed for user mouse
movement and should be set to 0 and then increased if the user is not getting
enough time allocated to the mouse manipulation by the program.

Check_for_stop_button as Boolean returns true if the stop button has been pressed at

any time during the current Run. For example, do loop until
check_for_stop_button will continue to loop until the stop button has been
pressed. This approach is somewhat slower than do ... loop until
check_for_user_action("...") which monitors keyboard presses via interrupt
rather than threading. If you select the menu item, “activate debug stops via
mouse click” under the debug menu, the testing is very fast, but any mouse click
will set this Boolean variable to true. If the above menu item is not checked, you
will need to press the stop button.

213

Check_for_user_action(action_string) as Boolean returns true when the user has
pressed the appropriate keyboard key specified by the action_string as follows:
"mouse down", "mouse down now", "control key", "option key", "shift key",
"command key", "control key now", "option key now", "shift key now",
"command key now" or "user cancelled". In the case of user cancelled the Mac
expects comman+period and Windows expects escape, but the Mac will usually
respond to either. If none of the above are found, the action_string is converted
to a number using val(action_string) and that number is compared to the current
keycode that is being pressed. If so, it returns true. For example, keycodes 123
through 126 are associated on most keyboards with the four arrow keys.

chop(x) as double Chop the argument to nine significant digits and set to zero if the

absolute value is less that 10^-15. This function is Arprec savvy (handles both
string reals and complex strings).

Chr(i) as string returns the character whose ASCII value is passed.

ChrB(i) as string returns a single byte character representing the value i.

Class classname marks the start of a class definition.

Clear_graphics(icanvas) clears icanvas canvas [1(Main), 2(Graphics)].

Clear_mouse_data resets mouse_down and mouse_up data.

Clear_text_output(itarget) clears target panel text output [0(both), 1(Main), 2(Text)].

CMY(cyan, magenta, yellow) as color specifies a color using CMY system. This is the
system used for color ink rather than additive color on a CRT. Values of the
three variables range from 0 (none) to 1.0 (maximum amount).

Color_modify(starting_color, dark_bright, color_shift) as color returns a modified

version of starting_color which has its lightness modified via dark_bright
(0.1(much darker)...0.5(darker)...1(no change)...1.5(brighter/lighter)...2(twice as
bright)) and its hue shifted by color_shift (-1.0 to 1.0, 0=no shift).

Color_selection_window(color, text_prompt) as Boolean opens the color selection

window and allows the user to select a color using whatever methods are
available via the operating system. The text_prompt is displayed on some
operating systems and the color is returned in color. The routine returns false if
the user pressed cancel.

214

Color_value(color, s0) as double returns the requested color value where s0 can equal
"hue", "saturation", "value", "red", "green", "blue", "cyan", "magenta", "yellow".
Only the first letter is looked at so you can simplify s0 as h, s, v, r, g, b, c, m, y.
Although red, green and blue values are integers from 0 to 255, the function
returns a double and needs to be handled as a double upon return. An alternative
to using this function is to use the .red, .green, .blue, .cyan, .magenta, .yellow,
.hue, .saturation or .value extensions to return or assign individual color
components.

Const variable_name = string, integer or real value defines a constant. An attempt to
change a constant will generate a run-time error, so dont.

Constructor At least one subroutine called constructor is required in each Class, and
will be run when the class is instantiated. These subroutines, all with the name
constructor, can be overloaded so that a class can be instantiated with different
properties based on the selection of parameters. A destructor subroutine, which
is run when the class goes out of scope, is optional.

Const_degree as double internally defined constant = radians/degree = 0.017533…

Const_e as double internally defined constant = 2.71828... (no longer supported, but
note that an arprec_e is available).

Const_eol as double end of line character for current computer.

Const_pi as double internally defined constant = π = 3.14159....

Const_tab as string the tab character.

Convert_to_string(any_variable) Converts single, double, integer, Boolean, or colors
into their string representation for printing while maintaining full accuracy. This
function is very useful for converting doubles to strings for use in Arprec math
without losing precision.

Cos(x) as double returns the cosine of x assuming x is in radians.

Cosh(x) as double returns the hyperbolic cosine of x.

CountFields(source, separator) as integer returns the number of fields within the

source string delineated by the string separator.

Currency a variable of use in business calculations designed to store and manipulate

money with maximum accuracy. Three digits to the right of the decimal point
and fifteen digits to the left of the decimal point are available. Adequate to
handle the US budget deficit created under the second Bush administration.

215

Date_seconds_to_SQL(total_seconds as double) as string returns the SQL date and
time as a function of the number of seconds that have elapsed since January 1,
1904. SQL format is YYYY-MM-DD HH:MM:SS

Date_SQL_now as string returns the SQL date and time as of the moment during

which the statement is executed. SQL format is YYYY-MM-DD HH:MM:SS

Date_SQL_to_seconds(SQL_string) as double returns the number of seconds that have
elapsed since 1904-01-01 00:00:00. A date and time prior to 1904-01-01
00:00:00 will yield a negative value. Dates prior to Jan 1, 1601 are assigned
based on the modern calendar and may be different from historical record. The
SQL date is a string in the format YYYY-MM-DD HH:MM:SS

Date_to_seconds(string_date) as double returns the number of seconds that have
elapsed since January 1, 1904. A date prior to Jan 1, 1904 will yield a negative
value. Dates prior to Jan 1, 1601 are assigned based on the modern calendar.

Debug_save_workspace when placed in a program, this statement saves both the

program and the current output in Main inside the programs folder with a
filename of "debug_workspace"

Destructor name header for an optional subroutine within a class definition that is

executed when the class goes out of scope. Can be used to release memory,
remove confidential information in a spreadsheet or handle other tasks that are
only needed when the class is no longer active (in scope).

Dim assign space for variable of any type, one line for each type.

Dim pie as double = 3.14159265 assign variable and its initial value. If a constant
variable is desired, use the Const expression.

|MS| div(s1, s2) as string returns s1/s2 using arbitrary precision string arithmetic.

const_Degree as double internal constant that defines the ratio of radians divided by
degrees. Multiply angle in degrees by const_degree to convert degrees to radians.
const_degree = π/180 = const_pi/180.0 = 0.017453292519943.

Do [until]... Loop [until]... see loop discussion above

Downto used in For loop to decrement counter. When downto is used with the optional
step keyword, the variable or numerical value following step should be positive,
not negative as intuition would suggest. The step keyword assigns an increment,
not the direction. When a negative step size is encountered, the loop will not
execute at all.

216

Draw_arrays(ix(), iy(), n1, n2) draws a set of lines connecting the points ix(n1), iy(n1)
to ix(n1+1), iy(n1+1) … ix(n2-1), iy(n2-1), ix(n2), iy(n2) to the buffer. The line
color is set using Graphics_forecolor(color) and the line width is set using
Graphics_stroke_width(npixels).

Draw_arrow(ix0, iy0, ilength, iwidth, theta, fill_color, draw_color) draw an arrow of

the specified length and width, with origin at ix0, iy0 at an angle of theta
(degrees). The outline is drawn using the draw_color and the arrow is filled with
fill_color. Thus this function serves to both draw and fill the arrow, so there is
no fill_arrow command. The thickness of the outline (draw portion) is
controlled by a prior call to graphics_stroke_width.

Draw_axes(x1, x2, y1, y2, line_thickness) draws unlabeled axes into the buffer and

enclosing the entire buffer inside. This is designed to be used with
plot_contour() or plot_filled_contour() which also uses the entire buffer.

Draw_circle(ix_center, iy_center, radius) draw a circle with center at ix_center,

iy_center of radius = radius. The thickness of the circle is assigned via a prior
assignment of graphics_stroke_width.

Draw_line(ix1, iy1, ix2, iy2) draw a line from ix1, iy1 to ix2, iy2. The thickness of
the line is assigned via a prior assignment of graphics_stroke_width.

Draw_oval(ix_center, iy_center, iwidth, iheight)
Draw_paragraph(string_paragraph, sfontname, ifontsize, paragraph_pixel_width,

byref line_separation, ix, iy) as boolean Draws the string_paragraph to the
buffer with upper left coordinates ix, iy and using the font sfontname of size
ifontsize. The maximum paragraph_pixel_width should be less than the width of
the buffer because it is only checked in between words. The line_separation
should be assigned an initial variable, but if the paragraph extends beyond the
buffer height, this method returns false and a smaller line_separation. A loop
can be used to continue trying until the line_separation has been reduced to a
value that fits. Make sure there is at most one end-of-line character in the
string_paragraph, and if it is present, it is at the end of the string_paragraph.
Feeding a string_paragraph parameter with multiple paragraphs inside (as
delineated with the end-of-line character) generates unreadable results.

Draw_rect(ix_center, iy_center, iwidth, iheight)

Draw_rotated_string(text, ix_center, iy_center, angle) draw a string centered at
ix_center, iy_center that has been rotated by the angle in degrees (not radians).
The nature of the string object is assigned by prior execution of graphics_font.

217

Draw_string(text, ix_center, iy_center) Draw the single line string text centered at
ix_center and iy_center. If multiline (string contains one or more end-of-line
characters), ix_center and iy_center designate the left edge of the first line of a
left-aligned paragraph. One can force left alignment of a single line string by
making ix_center negative (x_left = abs(ix_center)). All "<*p*>" substrings
found will be replaced with endofline characters.

Else optional component of a conditional (if then .. elseif then… else… end if)

Elseif optional component of a conditional (if then .. elseif then… else… end if)

End class last statement of a class definition

End function last statement of a function

End if last statement of a conditional (if then .. elseif then… else… end if)

End module last statement of a module

End select last statement of a select case statement

End sub last statement of a subroutine

Erf(x) as double returns the error function for real values of x.
Erfc(x) as double returns the complimentary error function for real values of x.

Exit jumps to the first line of code following the last statement of the current loop

Exp(x) as double returns the natural exponent of x = pow(e, x) = ex

Extends Used in a method declaration to indicate that the method is to be called using
object syntax, i.e., as if it were a method belonging to the object itself.
Extension methods should be inside a module as shown in the example below,
but the newer versions of MathScriptor allow functions with extends outside of
modules. To call, simply use dot syntax: if s0.endswith(“s”) then…

module string_extends
function endswith(extends s0 as string, withwhat as string) as boolean
 // Return true if string s0 ends with the string 'withWhat',
 // doing a standard string comparison.
 return right(s, withWhat.Len) = withWhat
 end function
 function beginswith(extends s as string, withwhat as string) as boolean
 // Return true if 's' begins with the string 'withWhat',
 // doing a standard string comparison.
 return left(s, withWhat.Len) = withWhat
 end function
end module

218

Factorial(ix) as double. returns ix!, the factorial of ix for values of ix from 0 to 170. If
factorials above 170 are required, use arprec_factorial.

Factorial_double(ix) as double. returns ix!!, the double factorial of ix for values of ix
from -1 to 300.

 n n! n!!
 1 1 1
 2 2 2
 3 6 3
 4 24 8
 5 120 15
 6 720 48
 7 5040 105
 8 40320 384
 9 362880 945
 10 3628800 3840

 11 39916800 10395
 12 479001600 46080
 13 6227020800 135135
 14 87178291200 645120
 15 1307674368000 2027025
 16 20922789888000 10321920
 17 355687428096000 34459425
 18 6402373705728000 185794560
 19 121645100408832000 654729075

 20 2432902008176640000 3715891200
 21 51090942171709440000 13749310575
 22 1124000727777607680000 81749606400
 23 25852016738884976640000 316234143226

False is the opposite of true, and is one of the two possible states of a Boolean.

219

Fourier-Transform methods are listed below. All the Fast Fourier Transform (FFT)
methods require that n, the number of points, be a multiple of 2 (i.e. equal to 2^k, where
k is an integer). Valid values of n are 128, 256, 512, 1024, 2048, 4096, 8192, 16384,
32768, 65536, 131072, 262144, 524288 or higher. The coefficients are stored in a
folded format so that the lowest frequencies are on the "edges" and the highest
frequencies are in the middle. The 0th element is the offset, or frequency=0,
component. The ft_linearize statement is available to translate the coefficients to more
manageable form where the 0th to highest frequency components are stored from low to
high in subscript. These can be refolded by using ft_fold.

FFT1(a1(), c1(), s1(), n) one-dimensional fast Fourier transform of the linear array

a1(0….n) placing cosines into c1(0..n) and sines into s1(0..n).

FFT1_inverse(a1(), c1(), s1(), n) inverse 1D fast Fourier transform. Takes the cosine

c1(0..n) and sine s1(0..n) arrays and returns the inverse transform in a1().

FFT2(a2(), c2(), s2(), n) two-dimensional fast Fourier transform of the two-dimensional

array a2(0….n, 0...n) placing cosines into c2(0….n, 0...n) and sines into
s2(0….n, 0...n).

FFT2_complex_association(c2a(), s2a(), c2b(), s2b(), n) as double returns the complex

association between a pair of transforms of the same size (n by n). A value of 1
means the images or data transformed have near perfect association. This
function mimics Fourier transform holographic association and is useful for
simulation human associative processes.

FFT2_inverse(a2(), c2(), s2(), n) inverse 2D fast Fourier transform.

FT_fold(c1(), s1(), c1lin(), s1lin(), npoints) transform the linearized coefficients in

c1lin(1..npoints) and s1lin(1..npoints) into a folded pair in c1(1..npoints) and
s1(1..npoints). When folded, the lowest frequencies are at 1 and npoints and the
highest frequency is in the middle (npoints/2). The zeroth frequency
components are transferred such that s1lin(0)=s1(0) and c1lin(0)=c1(0).

FT_linearize(c1(), s1(), c1lin(), s1lin(), npoints) transform the folded Fourier

coefficients in c1(1..npoints) and s1(1..npoints) into a linearized pair in
c1lin(1..npoints) and s1lin(1..npoints). When linearized, the frequency increases
linearly from low subscript to high subscript. The zeroth frequency components
are transferred such that s1(0)=s1lin(0) and c1(0)=c1lin(0).

220

Fill_arrays(ix(), iy(), n1, n2) fills a set of lines connecting the points ix(n1), iy(n1) to
ix(n1+1), iy(n1+1) … ix(n2-1), iy(n2-1), ix(n2), iy(n2) with the current
forecolor. The result is sent to the buffer.

Fill_circle(ix_center, iy_center, radius) fill a circle of a given radius with forecolor (set

first) and place the center of this circle at ix_center, iy_center.

Fill_oval(ix_center, iy_center, iwidth, iheight) fill an oval with forecolor.

Fill_rect(ix_center, iy_center, iwidth, iheight) fill a rectangle with forecolor.

Fit_chebyshev(x(), y(), ndata, a(), nparams, rmserror, rsquared) fits via SVD least

squares methods the data in x(1..ndata), y(1..ndata) to orthogonal Chebyshev
polynomial with weights returned in a(1..nparams). Numerical values of the
Chebyshev polynomials are given by the function chebyshev(iterm, x), and the
resulting fit evaluated using:

 for j=1 to nparams
 ypi=ypi+a(j)*chebyshev(j, x0)
 next

Fit_exponential(x(), y(), ndata, a(), rmserror, rsquared) fits via SVD least squares

methods the data in x(1..ndata), y(1..ndata) to the equation y = a(1)*exp(a(2)*x).
Note that unlike the other linear fits, nparams is not included as a parameter
because it is fixed at 2. The chi-squared goodness of fit is returned in chisqr.

Fit_fourier_transform(x(), y(), n, xp(), yp(), np, wapp) as string return the result of a
FFT fit to the data in x(1..n), y(1..n) in the plotting arrays xp(1..np), yp(1..np).
The value of np is equal to the number of coefficients used in the FFT, and thus
must be equal to 2^n, where n=4 to 16. High frequency noise can be reduced by
setting the apodization constant, wapp, to values above 0. Wapp is a double
between 0.0 and 2.0, but values above 0.5 may generate spurious edge effects.

221

Fit_genpoly(x(), y(), ndata, nparams, xp(), yp(), xmin, xmax, npoints, [sxponents]) as
string returns a string summary of the best fit general polynomial for the data
x(1..ndata), y(1..ndata) using a maximum of nparam fit parameters. The
equation that is fit is a(1)*x^b(1) + a(2)*x^b(2)+ ... +a(nparams)*x^b(nparams),
where b(1)..b(nparams) are integers in the range -10 to 10. This function then
returns calculated values in xp(1..npoints), yp(1..npoints) for x in the range xmin
to xmax. If the string sxponents is included, it lists one or more exponents of x
that will be included in the fit (e.g."0, 1, -2" and nparams=4 will fit to
y=a+bx+c*x^-2+d*x^n) where a, b, c, d and n are optimized by the fit.

An alternative form of genpoly is the following…

Fit_genpoly(x(), y(), ndata, a(), b(), nparams) as string returns a string summary of the
best fit general polynomial for the data x(1..ndata), y(1..ndata) using a maximum
of nparam fit parameters. The equation that is fit is a(1)*x^b(1) + a(2)*x^b(2)+
... +a(nparams)*x^b(nparams), where b(1)..b(nparams) are integers in the range -
10 to 10. This function is overloaded and exists in two forms. Above method
returns the coefficients instead of the best fit line. Both forms are iterative and
are CPU intensive.

Fit_henderson_hasselbalch(pH(), y(), n, a(), pka(), nterms, xp(), yp(), x1, x2, np) as

string
 carries out a one (nterms=1), two (nterms=2) or three (nterms=3) term

Henderson Hasselbalch fit to some numerical property of an ionizable molecule
or protein. The measurements in y(1..n) as a function of pH(1..n) are fit to the
equation:

Property pH()= a0 +

a1

1+10(pH− pKa
(1))

+
a2

1+10(pH− pKa
(2))

+
a3

1+10(pH− pKa
(3))

 The function returns the fit parameters in a() [a0=a(0), a1=a(1), etc.] and

pKa(1..3) and the result in xp(1..np) and yp(1..np) from x1 to x2 where np is the
number of points which should be set by the user. If np=0, no curve is returned.
The function returns a string summarizing the results of the fit. An alternative
slow but safer method is available using fit_henderson_hasselbalch_safe(..).

Fit_lanczos(x(), y(), ndata, a(), nparams, rmserror, rsquared) fits via SVD least squares

methods the data in x(1..ndata), y(1..ndata) to a Lanczos-type polynomial with
nparams parameters returned in a(1..nparams):

 y=a(1)+a(2)/x+a(3)/x^2+…+a(nparams)/x^(nparams-1).
 The chi-squared goodness of fit is returned in chisqr. The function that is fit is

credited to the Hungarian mathematician and physicist, Cornelius Lanczos, who
made many contributions to relativity theory and numerical methods. This

222

function was originally proposed as a method of fitting the loggamma function,
but has now been generalized to any fit of this type. The name Lanczos is
pronounced “lan-sosh”.

Fit_lanczos2(x(), y(), ndata, a(), nparams, rmserror, rsquared) fits via SVD least squares

methods the data in x(1..ndata), y(1..ndata) to a non-standard Lanczos-type
polynomial with nparams parameters returned in a(1..nparams):
y=a(1)+a(2)/x+a(3)*x+a(4)/x^2+a(5)*x^2+a(6)/x^3+a(7)*x^3 +…
The programmer can easily evaluate this polynomial by using the function
lanczos2(iterm, x) as follows:

 for j=1 to nparams
 ypi=ypi+a(j)*lanczos2(j, x0)

 next

Fit_legendre(x(), y(), ndata, a(), nparams, rmserror, rsquared) fits via SVD least squares

methods the data in x(1..ndata), y(1..ndata) to orthogonal Legendre polynomial
with weights returned in a(1..nparams). Numerical values of the legendre
polynomials are given by the function legendre(iterm, x), and the resulting fit
evaluated using:

 for j=1 to nparams
 ypi=ypi+a(j)*legendre(j, x0)

 next

Fit_polynomial(x(), y(), ndata, a(), nparams, rmserror, rsquared) fits via SVD least

squares methods the data in x(1..ndata), y(1..ndata) to a polynomial with
nparams parameters returned in
a(1..nparams): y=a(1)+a(2)*x+ a(3)*x^2+… +a(nparams)*x^(nparams-1). The
chi-squared goodness of fit is returned in chisqr.

Fit_scan_polynomials(x(), y(), ndata, max_number_of_params, xp(), yp(), xmin, xmax,

npoints) as string returns a string summary of the best polynomial fits for the
data x(1..ndata), y(1..ndata) using between 2 and max_number_of_params free
parameters. Note that this function includes all the polynomials from
fit_trendline as well as fit_genpoly. In the latter case, the max number of
parameters is held to 5 unless the user enters a negative value for
max_number_of_params. If so, then genpoly can will allow a scan of up to six
parameters. This option will add quite a bit of time to the search, however. After
the search the best fit is selected based on the smallest value for
rmserror*nparams and this function returns calculated values in xp(1..npoints),
yp(1..npoints) for x from xmin to xmax.

223

Fit_trendline([itype], x(), y(), ndata, nparams, xp(), yp(), xmin, xmax, npoints) as
string returns a string summary of the best fit trendline for the data x(1..ndata),
y(1..ndata) using a maximum of nparam fit parameters. This function then
returns calculated values in xp(1..npoints), yp(1..npoints) for x in the range xmin
to xmax. This function is the best choice if the goal is to plot a trendline through
a set of data points. It will also provide a quick analysis of which of the above
fits provides the best fit to a set of data because the string that is returned not
only defines the best fit but provides a list of the parameters. If itype is included,
it selects the trendline fit to be: (1)polynomial, (2)lanczos, (3)lanczos2,
(4)legendre, (5)chebyshev, (6)exponential.

Floor(x) as double next integer value smaller than x.
 if x=4.952, floor(x)=4, ceil(x)=5
 if x=-4.95, floor(x)=-5, ceil(x)=-4
 if x=6, floor(x)=6, ceil(x)=6

For ... Next loops through the statements incrementing [or decrementing if "downto" is

used] the loop counter i by i3 until it reaches i2. The step is optional, and if left
out, the default is 1. It is important to remember that the step parameter is
always positive, and the direction is set entirely by the presence or absence of
"downto". Loops can also be constructing using real variables: e.g. For r = 0.1
to 0.7 step 0.1 is allowed and generates a loop with r=0.1, 0.2, 0.3, 0.4, 0.5, 0.6
and 0.7.

For i=i1 to [downto] i2 [step i3] ... next loops through the statements incrementing [or
decrementing if "downto" is used] the loop counter i by i3 until it reaches i2.
The step is optional, and if left out, the default is 1. It is important to remember
that the step parameter is always positive, and the direction is set entirely by the
presence or absence of "downto". Loops can also be constructing using real
variables: e.g. For r = 0.1 to 0.7 step 0.1 is allowed and loops with r=0.1, 0.2,
0.3, 0.4, 0.5, 0.6 and 0.7.

224

Format(x, s0) as string returns a formatted string representation of the variable x
where the characters in s0 produce the formatting described below:

 # placeholder that displays the digit if present (e.g. +###, ###, ###.00)
 0 placeholder the displays either 0 or a digit if applicable (e.g. +0.000)
 . decimal location, when present, decimal is always shown
 , placeholder to indicate thousands separators using commas
 % multiplies the number by 100
 (displays an opening paren
) displays a closing paren
 + forces display of sign, either + or – as required
 - displays a minus sign only when the number is negative
 E, e forces scientific notation (e.g. –0.000000000000E)
 \char displays the character that follows the backslash (e.g. \$-#, ###, ###.00)

Format(x, nwidth, ndecimal) as string returns a formatted string of width nwidth

representing the number x. If ndecimal is 0, then x is shown as a rounded
integer and the result is padded so that the number is right-justified with blanks.
If ndecimal>0, a decimal point is shown and ndecimal digits to the right of the
decimal point are shown. If the number will not fit, the function uses
exponential (0.00…E) format. You can force exponential format by setting
nwidth equal to the negative of the width desired.

Franck_condon_overlap(nu1, nu0, d10, rmass1, rmass0, v1, v0) as double returns the

absolute value of the Franck-Condon overlap integral. Parameters are nu1 =
wavenumber of state1 vibration; nu0 = wavenumber of state0 vibration; d10 =
dimensionless shift of oscillators; rmass1 = reduced mass of the vibration nu1 (in
amu); rmass0 = reduced mass of the vibration nu0 (in amu); v1 = vibrational
quantum number in state 1; v0 = vibrational quantum number in state 0; If
d10=0.0, the dimensionless shift is calculated approximately based on the other
variables, and the calculated value is returned in d10.

225

FT_fold(c1(), s1(), c1lin(), s1lin(), npoints) transform the linearized coefficients in
c1lin(1..npoints) and s1lin(1..npoints) into a folded pair in c1(1..npoints) and
s1(1..npoints). When folded, the lowest frequencies are at 1 and npoints and the
highest frequency is in the middle (npoints/2). The zeroth frequency
components are transferred such that s1lin(0)=s1(0) and c1lin(0)=c1(0).

FT_linearize(c1(), s1(), c1lin(), s1lin(), npoints) transform the folded Fourier

coefficients in c1(1..npoints) and s1(1..npoints) into a linearized pair in
c1lin(1..npoints) and s1lin(1..npoints). When linearized, the frequency increases
linearly from low subscript to high subscript. The zeroth frequency components
are transferred such that s1(0)=s1lin(0) and c1(0)=c1lin(0).

Function defines the start of a function but must include parameters and type, for

example, Function blim(x as double) as double. Close using end function.

|MS| FWT2(a2(), nbasis) replace the two-dimensional square matrix a2(1..nbasis,
1..nbasis) with its wavelet transform.

|MS| FWT2_inverse(a2(), nbasis) replace the two-dimensional square matrix
a2(1..nbasis, 1..nbasis) with its inverse wavelet transform

Gamma(x) as double returns gamma(x), where x >=0. Note that x does not have to be

an integer. This function is arprec savvy, and if the parameter is a string,
gamma(s1) returns a string. The arprec version accepts complex string numbers,
and returns complex string gamma(s1). Note that factorial(x-1)=gamma(x).

|MS| Gauss_laguerre(x1(), w1(), n0) returns the Gauss-Laguerre abscissas x1(1:n)

and weights w1(1:n) for integration from 0 to infinity where n0 is used to assign
the value of n, the number of pairs. The arrays x1() and w1() are returned
automatically redimensioned to the appropriate values. If 3<n0<14 then n
equals 2^n0 which provides for systematically larger values of 8, 16, 32, 64, 128,
256, 512, 1024, 2048, 409, and 8192. If 13<n0<276 then n=n0. For
compatibility with earlier versions, you can also set n0 equal to 512, 1024, 2048,
4096 or 8192. You can use the same values for –Infinity to 0 by simply
multiplying the x() values by –1. Integration from –Infinity to Infinity is then
simply the sum of –Infinity to 0 plus 0 to Infinity.

226

Gauss_legendre(x1, x2, x1(), w1(), n) generate the Gauss-Legendre abscissas x(1:n)
and weights w(1:n) for n-point quadrature for an integral from x1 to x2.

GOTO string_label jump to label identified using an end colon (label:) Use of this

function violates the rules of structured programming, but sometimes it is
necessary.

Graphics_font(font_name, isize, Qitalics, Qbold) as Boolean sets the graphics font to
the string font_name using isize to set the integer size and the booleans Qitalics
and Qbold to set italics and bold options, respectively. Returns true if a valid
font was found in the font folder.

Graphics_forecolor(color) sets the color for all graphics operations to follow.

Graphics_forecolor(ired, igreen, iblue) as above but uses specific RGB values.

Graphics_stroke_width(npixels) sets the stroke width in pixels.

Graphics_use_quickdraw. Sets via program command the preference "Use QuickDraw
rather than Quartz graphics engine (OSX only)." This option is recommended
when picture_write is running under MacOSX and transparency is involved.
This command is ignored on Windows computers.

Harmonic_eigenvalue(wavnum, re, mu, v, byref ewav, byref r1, byref r2) as double
returns the energy of the vth vibrational level of a Harmonic oscillator in eV as a
function of the fundamental frequency, wavnum, in wavenumbers, the
equilibrium bond length, re, in Angstroms and reduced mass mu in amu.
Function returns the additional parameters ewav (level energy in wavenumbers),
r1 (the minimum classical bond length (Å) in level v) and r2 (the maximum
classical bond length (Å) in level v).

Harmonic_eigenvector(xr(), psi(), epot(), eshift, r1, r2, v, npoints) returns the
eigenvectors of the quantum mechanical harmonic oscillator based on the
properties assigned via a previous call to harmonic_eigenvalue(...). The
wavefunction [psi(1..npoints)] in units of 1/Sqrt[Å] (assuming eshift=0.0) and
classical potential function [emorse(1..npoints)] in eV are returned as a function
of the r values in xr(1..npoints). If eshift is non-zero, the wavefunction is
returned shifted in energy space by eshift so that the wavefunction can be
displayed on top of the harmonic potential. Once shifted, the wavefunction can
no longer be used to derive matrix elements of the harmonic oscillator.

Hermite(n, x) as double. returns the Hermite polynomial Hn(x) where n =0 to 200 and

x is the real argument.

227

Hermite_function(n, x) as double. returns the Hermite Function representing the
wavefunction of a harmonic oscillator of quantum number n and coordinate x.

ψ (x)= mω
π

1

2n n!π
1
2
exp −x2

2
⎛
⎝⎜

⎞
⎠⎟
Hermite n, x() n = 0,1,2,....

ψ (x)= mω
π

Hermite_ function(n, x)

Hex(i) as string returns the string representing the hexadecimal value of integer i.

bin(15) = "1111", oct(15) = "17", hex(15) = "F"
bin(127) = "1111111", oct(127) = "177", hex(127) = "7F"
If you want to enter an integer using a hexadecimal number use i =
ivalue("&h7F")

HSV(hue, saturation, value) as color returns the color designated by the hue, saturation

and value where each parameter is a double from 0 to 1.0. The values of hue
from zero to one span the range from red(0.0)-orange(0.125)-yellow(0.17)-
green(0.33)-aqua(0.5)-blue(0.66)-purple(0.8)-red(1.0). The saturation adjusts
the amount of color versus gray scale with 1.0 providing full color. The value
adjusts the brightness and goes from 0.0 (black) to 1.0 (brightest).

|MS| http_bytes_received as integer The number of bytes received from the last
transfer.

|MS| http_bytes_total as integer The number of total bytes you should have
received. This number is provided by the web site but is often unavailable or set
to zero. Either way, when this number is zero you will have to examine the
page_received data to verify that the downloaded page is correct. However, if it
is nonzero and the bytes_received number is equal, you can have confidence
that the download was successful.

|MS| http_download_file(string_file_address_as_url) as Boolean downloads the file
using http or ftp protocols. The file is automatically placed in the folder called
"downloads" which must be created and placed inside the Scriptor folder prior to
using a program with this routine. The string_file_address_as_url should be of
the form "http://some_web_address.abc/filename.xyz".

|MS| http_error_code as integer An error code that may help you diagnose why the

download failed. For details see the RealBasic Language reference manual for
the SocketCore Class. Some common error are: 1 Download file could not be

228

created (make sure there is a "downloads" folder in the same folder as Scriptor);
102 Lost connection in middle of transfer- also could mean a slow internet;
103 Bad or misspelled internet address, or the address is no longer valid;
108 Ran out of memory during transfer so the transfer was terminated.

|MS| http_get_page(string_url) as Boolean downloads the page from the internet
using http protocols. The page address in the string_url should be of the form
"http://some_web_address.abc". The progress is displayed in the basic_input
field and if the download is successful, the page is placed into
http_page_received. If a connection was made, the routine returns True, if a
problem is discovered, it returns False. However, slow internet behavior will
sometimes provide True but no page so the user needs to verify that there is a
valid page by examining http_page_received.

|MS| http_page_received as string The page retrieved using the http_get_page
routine.

|MS| http_url_received as string The actual url from which the http_page_received
was retrieved. This may be different from the one you requested if the site
automatically redirects you. This is updated after the page has been fully
downloaded and can also be checked to verify a completed transfer.

If ... Then ... Else Basic form of the If conditional statement. Note that one-liners are

accepted but one-liners do not end in end if. Multiline if statements must use the
following format.

If ... Then ... Elseif ... Else … End if multiline conditionals must end with End if

|MS| Imag(s0 as string) as string returns the imaginary part of a complex arprec

number.

|MS| Imult(s1 as string, s2 as string) as string returns the result of multiplying two

arprec string integers.

Inherits is used in a class definition to designate the name of a class from which the

current class is to inherit definitions (see discussion of classes above).

Input(s0 as string) as string Retrieves input from the user input line with an optional

prompt (s0).

InStr([kstart,] source_string, find_string) as integer Find find_string in source_string

starting at kstart (optional, if missing start at the first letter of source_string).

229

InStrB([kstart,] source_string, find_string) as integer as above but works on byte
strings only.

|MS| interface_serial_close(icontrol) close serial software control = icontrol (1, 2 or

3). Whatever hardware port to which it was attached is now available to other
systems.

|MS| interface_serial_data_received(icontrol, Qsave) as string returns the contents

of the data received buffer of the software serial control = icontrol. If Qsave is
true, the buffer is not cleared and the same data will be included in the next read.

|MS| interface_serial_data_send(icontrol)=string_data_to_send send the string data

via serial control = icontrol(1, 2 or 3). The software serial control must have
been initialized prior to sending data.

|MS| interface_serial_initialize(icontrol, iport, [ibaudrate, iparity, ibits, istopbits]) as

string initializes a software data control (icontrol=1, 2 or 3) and attaches it to a
hardware port (iport=1, 2, ..nports). The subroutine returns a string object which
contains the information on the process and the default or assigned parameters.
The first two parameters are required. The remaining four must either be absent
or all four must be defined: ibaudrate = 0(300 bps), 1(600), 2(1200), 3(1800),
4(2400), 5(3600), 6(4800), 7(7200), 8(9600 bps=default), 9(14400), 10(19200),
11(28800), 12(38400), 13(57600), 14(115200), 15(230400);

 iparity= 0 (none=default), 1 (odd) or 2 (even);
 ibits = 0(5 data bits), 1(6), 2(7), 3(8 data bits = default);
 istopbits = 0 (1 stop bit = default), 1 (1.5 stop bits), 2 (2 stop bits).

|MS| interface_serial_list(byref slist()) returns a list of serial ports available on the

computer the list is loaded into slist() and the user should read the data by using
ns=ubound(slist) to find how many ports are present

230

|MS interface_serial_status_check(icontrol, status) as integer based on what is
passed in the string, status, this function returns the status of various lines in an
integer. True/false results are returned as zero (false) or one (true). The string
status can take the following values:
"baud" returns the baud rate in bps (300, 600, ..., 115200, 230400)
"bits" returns the number of bits (0=5, 1=6, 2=7, 3=8)
"cleartosend" returns 1 if cleartosend is true, 0 otherwise
"datacarrierdetect" returns 1 if true, 0 otherwise
"parity" returns parity set: 0=none, 1=odd, 2=even
"port" returns the port attached to control
"stop" returns the number of stop bits: 0=1, 1=1.5, 2=2 stop bits.

|MS| interface_serial_status_set(icontrol, status, ivalue) sets the status of serial

control icontrol based on the following status strings and integer values: "baud"
sets the baud rate --> ivalue = 0(300 bps), 1(600), 2(1200), 3(1800), 4(2400),
5(3600), 6(4800), 7(7200), 8(9600 bps=default), 9(14400), 10(19200),
11(28800), 12(38400), 13(57600), 14(115200), 15(230400). You can also set
that baud rate by assigning to the variable, ivalue, a valid baud rate. If this
option is used, ivalue must be equal to one of the rates listed above.
"bits" sets the number of bits [ivalue=0 (5), 1(6), 2(7), 3(8)]
"cleartosend" sets cleartosend to true (ivalue=1) or false (ivalue<>1)
"dataterminal" sets dataterminalready to true (ivalue=1) or false (ivalue<>1)
"parity" set parity to ivalue=0(none), 1(odd), 2(even)
"stop" sets the number of stop bits where ivalue=0(1 stop bit), 1(1.5), 2 (2)

iSession as integer returns the number of run sessions since the user manually cleared
the output by pressing the “clear output” button. Useful for running a program
with different user inputs or various options based on the number of times the
program is run. If writing a program for others to use, remember to include
instructions for the user to press “clear output” to reset the program.

iValue(s0) as integer returns the integer value of the string.

keyboard_keycode_decipher(keycode) returns the name of the key that is associated

with the keycode (0 to 128). This function provides a cross-platform capability
which works with the majority of keyboards. Run the program
template_keycodes to verify that the current keyboard can be monitored.

231

keyboard_monitor_activity(ithkeypress, ascii_value, keycode, total_text_so_far)
Provided Q_monitor_keyboard has been set to true, this method returns the
ascii_value of the ithkeypress. If the ascii_value is outside of the range of
printable characters the keypress is analyzed and the keycode associated with the
pressed key is returned in keycode. The text that has been typed since
Q_monitor_keyboard has been set to true is returned in total_text_so_far. The
only value you should modify is ithkeypress as follows:

 if ithkeypress is set equal to -1, reset all monitors and clear total_text_so_far.
 if ithkeypress is set equal to 0 (which is the normal choice), return number of the

last keypress in ithkeypress.
 if ithkeypress is set >0, return that incident provided ithkeypress is equal to or

less than the actual number of key presses.

keyboard_monitor_input(imilliseconds) as string an alternative method of

monitoring input typing. The function returns all text that has been typed by the
user since the Run was started. Only ascii printable text is returned. Use
keyboard_monitor_activity() to monitor the entire keyboard.

key_down_ascii_value as integer the ascii value of the key that was last pressed.

Each time a key is pressed on the keyboard, the key_down_ascii_value is set by
the function check_and_clear_input to hold the ascii decimal equivalent of that
key. The user should set this value to -1 after extracting the number to make
sure each individual key press is treeated as a unique event. It is essential that
you execute check_and_clear_input immediately prior to checking
key_down_ascii_value as that is the function that traps and assigns this variable.

LaguerreL(n, alpha, x) as double returns the associated Laguerre polynomial for

integer order n, where alpha and x can both be real.

LaguerreR(n, alpha, x) as double returns the associated Laguerre polynomial for

floating point n, where alpha and x can both be real. The solution is obtained via
interpolation and the results are not as accurate as LaguerreL(n, alpha, x).

Lanczos2(n, x) as double returns the numerical value of the nth Lanczos type 2

polynomial for argument x. The first possible value of n is 1, not zero.

Left(s0, n) as string returns the n characters from the left of s0.

LeftB(s0, n) as string returns the n bytes from the left of s0.

232

Legendre(n, x) as double returns the numerical value of the nth Legendre polynomial
for argument x. The first possible value of n is 1, not zero, so the “zeroth”
Legendre polynomial is referenced by n=1 [e.g. Pn(x) =Legendre(n+1, x)] . The
first ten polynomials are listed below.

Len(s0) as integer returns the number of characters in s0.

LenB(s0) as integer returns the number of bytes in s0. The only difference between

using the byte string functions versus the normal versions is that the byte
versions are much faster but only work with strings restricted to byte characters,
such as the ASCII character strings in standard English. Languages such as
Japanese and Chinese require multiple byte characters and require the use of the
normal string operators.

|MS| load_class(filename, window) use with compiler directive //# (see above)

|MS| load_method(filename, window) use with compiler directive //# (see above)

|MS| load_module(filename, window) use with compiler directive //# (see above)

Log(x) as double returns the natural log = ln(x). In the event a different base is desired,

use (Log(x))/Log(base) to calculate the value (see Log10(x) for log base 10).

Log10(x) as double returns log10(x), the log base ten of x.

233

|MS| LogGamma(x) as double natural logarithm of the gamma function = LogΓ(x).
Note that n! = Gamma(n+1) = exp(logGamma(n+1)). For example, 12! = 479,
001, 600, which equals Exp(Gamma(12 + 1)) = 479, 001, 600. Note that
truncation error makes this method approximate for large n, thus 19! = 121, 645,
100, 408, 832, 000 but exp(loggamma(19 + 1)) = 121, 645, 100, 410, 059, 440

Loop [Until] ending keyword of a do [until] loop [until] construct

Lowercase(s0) as string converts the string s0 to all lower case

LTrim(s0) as string trims all leading (left) blanks from the string s0

|MS| matdup(a2()) as double(,) copy the matrix a2(n1, n2) into a new matrix b2(n1,
n2). Usage example: b2=matdup(a2()) where b2 is a two-dimensional array.
Note that the 0x0, 0x1, 1x0 elements are included in duplication. The recipient
array will be redimmed to the same size as a2() in the process.

|MS| matidn(nsize) as double(,) initialize a two-dimensional identity matrix of
dimension nsize by nsize with all elements equal to zero except diagonals which
equal 1. Usage example: a2=matidn(10) where a2 is a two-dimensional array
that is set to a size a2(0:10, 0:10). Note that the a2(0, 0) element is also created
and set to one.

|MS| matinv(a2()) as double(,) invert the two-dimensional square matrix a2().
Usage example: b2=matinv(a2()) where b2 is a two-dimensional array. Note
that the 0x0, 0x1, 1x0 elements of a2 are ignored. It is essential that the a2(,)
matrix be square and be dimed or redimed to the proper size prior to calling
matinv, as this method inverts the entire matrix.

|MS| matmult(a2(), b2()) as double(,) multiply a2(n1, n2) by b2(n2, n3) to create
c2(n1, n3)Usage example: c2=matmult(a2(), b2()). Note that the 0x0, 0x1, 1x0
elements are ignored. The a2(,) and b2(,) matrices should be dimed or redimed
to the correct sizes prior to calling matmult.

|MS| matrand(n1, n2) as double(,) initialize a two-dimensional matrix of dimension
n1 x n2 with random elements from -1 to 1. Usage example: a2=matrand(10,
10) where a2 is a two-dimensional array. Note that the 0x0, 0x1, 1x0 elements
of a2 are also created and randomized.

234

|MS| mattran(a2()) as double(,) transpose the matrix a2(n1, n2) into the matrix b2(n2,
n1). Usage example: b2=mattran(a2()) where b2 is a two-dimensional array.
Note that the 0x0, 0x1, 1x0 elements are included in transposition. It is essential
that the a2(,) matrix be dimed or redimed to the exact size prior to calling
mattran.

|MS| matzero(n1, n2) as double(,) initialize a two-dimensional matrix of dimension
n1xn2 with all elements equal to zero. Usage example: a2=matzero(10, 10)
where a2 is a two-dimensional array. Note that the a2(0, 0) element is also
created and set to zero. The recipient array is redimmend to size n1xn2 in the
process.

|MS| matrix_complex_diagonalize(ar(,), ai(,), vr(,), vi(,), er(), ei(), n [, smat, svec,

sresult]) diagonalize the matrix a(1..n, 1..n) to produce eigenvectors v(1..n, 1..n)
and eigenvalues e(1..n). The real and imaginary parts are in the _r and _i
matrices or vectors, respectively. The variables ar(,), ai(,), vr(,), vi(,), er() and
ei() are doubles and the matrices must be symmetric, Hermitian and dimensioned
to nxn (ar, ai, vr, vi) or n (er, ei). The optional byref string variables return the
input matrix in smat, the eigenvectors in svec and the result of the
diagonalization in sresult. The latter should have very small off-diagonal
elements and the eigenvalues along the diagonal.

|MS| matrix_diagonalize(h2(), v2(), e1(), nsize, nroots) diagonalize the square matrix
h2(1..nsize, 1..nsize) to generate the lowest nroot solutions. Place the
eigenvectors in v2(vector_number, root_number) and the eigenvalues in
e1(1..nroots), e1(1) is the smallest or most negative eigenvalue.

|MS| matrix_gauss_jordan(a2(), b2(), nsize, ms) use Gauss Jordan elimination to

solve the set of linear equations in the square matrix a2(1..nsize, 1..nsize) and
replace it with its inverse and return the ms solution vectors (ms<=nsize) in the
matrix b2(1..nsize, 1..ms). Less efficient than matrix_invert but provides
solution vectors. If ms=1 (a single solution vector), use a one-dimensional array
b1() and leave out the last parameter.

|MS| matrix_invert(a2(), det, nsize) use LU decomposition to replace the square
matrix a2(1..nsize, 1..nsize) with its inverse and return the determinant in det.
Provides the determinant but no solution vectors. More efficient than the
gauss_jordan method.

|MS| matrix_print(a2(), nrows, ncols, ncols_per_set) as string return a formatted
matrix a2(1..nrows, 1..ncols) with ncols_per_set at a time. You can then print
out the matrix with the rows and columns aligned provided you have selected a
proportional font using Set_text_style or by the menu.

235

|MS| matrix_svd(A(), V(), W(), m, n) given the matrix a(1..m, 1..n) compute its
singular value decomposition. Upon return, the A() matrix is replaced by the U()
matrix with the V() matrix and the W diagonal elements are returned in the
parameters so designated. Thus, this subroutine solves the matrix problem
shown below:

a11 … a1n
  
am1  amn

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ =

u11 … u1n
  
um1  umn

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ •

w1 0


0 wn

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ •

v11 … v1n
  
vn1  vnn

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

T

 where the T indicates the transpose of matrix v(1..n, 1..n). In our adaptation, the

diagonal matrix w is returned as a one-dimensional array containing the diagonal
elements. An alternative view of the above matrix equation is the following:

Aij = wkUikVjk
k=1

n

∑

 SVD takes the matrix A and decomposes it into a set of singular values with
weighting factors wk. One way of viewing SVD is a method of solving a set of
m linear equations involving n unknowns. There is no more reliable method of
doing a linear least squares fit (see demo_svd_fit.txt). SVD is also used
extensively to extract component spectra from time resolved spectra (see
demo_svd.txt). In many cases, and SVD will yield a set of weighting factors
dominated by only a small number of weighting factors, w(), with the other
weighting factors near to zero. Then it is important to zero out these values and
use backsubstitution to extract vectors that are physically realistic and not
contaminated by noise.

236

|MS| matrix_svd_backsubstitute(U(), V(), W(), m, n, b(), x()) This subroutine is
called after the matrix_svd is run and the values of U(), V() and W() are exactly
those returned in the A(), V(), W() matrix_svd parameter sequence. Note that
you do not need to take the transpose of v(). What is needed first, however, is to
go through the w() array and zero out those that have a magnitude that is
significantly smaller than the largest weight. Because all calculations are done
in double precision, you can carry out this zeroing process with confidence
whenever wk is less than 10-6 of wmax. Some trial and error is required for values
above this cut-off. Then you need to supply a value for the b(1..m) vector to
extract the x(1..n) vector, which is the desired result:

x = V i
w1 0


0 wn

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
iUT ib

max(a1, a2, ..., aN) as double returns the variable that has the largest value (2 or more

variables are possible).

Max(a(), n1, n2) as double returns the maximum value in the array in the range

a(n1)…a(n2).

Microseconds as double returns the number of microseconds that have elapsed since

your computer was turned on. This number will roll over if the computer has
been on for a long time. This function is not very accurate on some Windows
platforms.

Mid(s0, istart [, nlength]) as string return the substring from s0 starting at istart of
length = nlength. If nlength is not included, the string from istart to the end is
returned.

MidB(s0, istart [, nlength]) as string return the substring from s0 starting at istart of
length nlength in bytes. If nlength is not included, the string from istart to the
end is returned.

Midi_notes_off Turn off all midi notes that are on to produce silence.

Midi_play_note(ivoice, ipitch, ivelocity, ioption) play instrument ivoice at pitch ipitch
(=60 at middle C) with volume ivelocity (0=off, max=127) and show the note
being played on the keyboard if ioption=1

237

Midi_play_real_note(ivoice, realpitch, velocity, ioption) as above but realpitch can be
any real number from 0.0 (off) to 126.9999. Allows playing of fractional pitches
not conforming to well-tempered western tradition

Midi_set_polyphony(npoly) set the number of notes that can be played simultaneously
from 1 to 64. Some computers can only handle 32 so experiment.

Min(a1, a2, …, aN) as double returns the minimum value within the set a1..aN. An

alternative form of this function is shown below, which works with arrays.

Min(a(), n1, n2) as double returns the minimum value in the array in the range

a(n1)…a(n2).

Minus(s1, s2) as string returns s1 - s2 using arbitrary precision string arithmetic

Mod operator for calculating the integer remainder (modulus) of two integers using the

syntax iremainder = ia mod ib. This operator will accept real numbers, but
rounds them to integers before carrying out the calculation.

Module module_name first line of a module- the last line is end module.

Molecules and Quantum Mechanics. The following molecular statements provide
methods of plotting out a molecule as well as the electrostatic field calculated
approximately based on the charges in Q(). All manipulations assume Cartesian
coordinates [x(1..natoms), y(1..natoms) and z(1..natoms)] are in Ångstroms and that the
charges [Q(1..natoms)], when included, are Mulliken charges. The dipole moment
function is only rigorously defined for a neutral molecule. Dipole moments of charged
molecules are, by convention, calculated by assuming center of mass coordinates, and
some suggest meaningless.

Molecule_calculate_overlap(atom(), x(), y(), z(), natoms, S(,) [, gamma(,)]) as string

return the overlap matrix for the molecule in S(nbasis, nbasis) and a printout in
the returned string. The printout provides a description of the orbitals. The
optional two-dimensional array, gamma(1..natoms, 1..natoms) returns the
repulsion integrals.

Molecule_charge as integer sets the charge on a molecule in preparation for a

quantum mechanical calculation (CNDO or INDO).

Molecule_COM_coords(satom(), x(), y(), z(), natoms) translates the coordinates in

x(1..natoms), y(1..natoms), z(1..natoms) to a center of mass representation.

238

Molecule_configuration_moment(i, j, mx, my, mz) as double returns the transition
moment for the singly excited configuration j←i, where j is an unfilled
molecular orbital and i is a filled molecular orbital in the ground state system.
mx, my and mx return (byref) the transition moment components in the x, y and
z directions in Debyes for the j←i configuration. [note that oscillator strength
is given by f = 0.0037927 *dE(eV)*Mtot(D)^2, where dE is in electron volts and
Mtot is the transition moment in Debye. Mtot = sqrt(mx^2 + my^2 + mz^2)]

molecule_correlate_ground_state(numclosed, numopen [, ddom], byref ecorrelation)

as string returns an analysis of the correlation of the ground state based on full
single and double configuration interaction within a basis set of numclosed by
numopen molecular orbitals. The ByRef parameter ecorrelation returns the total
CISD ground state correlation energy in Hartrees. The optional parameter ddom
assigns a multiplier for double-double off-diagonal matrix elements. Values less
than 1.0 enhance ground state correlation by transferring correlation from the
excited state manifold into the ground state manifold. 0.0 sets the number to
unity (default).

molecule_dipole_moment(x(), y(), z(), Q(), natoms, arrow_size, xshift, yshift) as
double
returns the molecule dipole moment in Debyes based on the coordinates (x(1..natoms),
y(1..natoms), z(1..natoms)) in Ångstroms and the atomic charges, Q(1..natoms). This
function will also print out an arrow showing the dipole moment of size = arrow_size on
the COM of the molecule. Set arrow_size=0 to only calculate the value. Shift the arrow
by entering non-zero values of xshift
(positive shifts right) and yshift
(positive numbers shift up). Note that
this method does not include the dipole
moment associated with hybridization
(for example, the sp contribution). To
include that information, it is necessary
to execute molecule_run_scf(..) and
use molecule_scf_dipole_moment(…)
to access the resulting dipole moment
components.

molecule_draw(satom(), x(), y(), z(), natoms, iatomsize, Qshow_numbers) draw the

molecule defined by the atom list satom(1..natoms)[which lists the atom labels
as in C, N, O, etc.] and with cartesian coordinates x(1..natoms), y(1..natoms) and
z(1..natoms) using a heavy atom size of iatomsize. The heavy atoms are
numbered if Qshow_numbers=true. The molecule fills the canvas unless the
range is defined by molecule_plot_space(x1, x2, y1, y2).

239

molecule_draw_simple(atom(), x(), y(), z(), natoms, brightness, bondwidth,

Qdraw_hydrogens) draw the molecule defined by the atom list
satom(1..natoms)[which lists the atom labels as in C, N, O, etc.] and with
cartesian coordinates x(1..natoms), y(1..natoms) and z(1..natoms) using the
integer bondwidth to set both single and double bond thickness. The molecule
fills the canvas unless the range is defined by molecule_plot_space(x1, x2, y1,
y2). Hydrogens are included if Qdraw_hydrogens is true. The double brightness
varies from 0 (darkest) to 1 (all white).

molecule_draw_vector(vx, vy, vz, arrow_length[, arrow_width], ioption, xshift, yshift)

draw the vector vx, vy, vz relative to the center of the buffer, with size
arrow_size. Color is black (ioption=0), red to blue (ioption=1) or blue to red
(ioption=2). Shift the arrow by entering non-zero values of xshift and yshift. If
the arrow_width parameter is not included, the width is automatically calculated
from the length.

molecule_external_charges(x(), y(), z(), Q(), ncharges) assigns the cartesian
coordinates and values of external charges. Each ith charge has an assigned
charge value, Q(i), in electron units, and cartesian coordinates x(i), y(i) and z(i),
where i=1...ncharges. These values influence subsequent SCF calculations and
field plots.

molecule_g(i, j, k, l) Returns the general two electron integral <ij|kl> in Hartrees based
on the quantum chemist's notation. In this notation, coulomb integrals are
<ii|kk> [=g(i, i, k, k)] and exchange integrals are <ik|ik> [=g(i, k, i, k)]. This
function will also return eigenvectors v(iao, jmo) = g(iao, jmo, 0, 0) by setting
the last two parameters to zero. Eigenvalues (in Hartrees) are returned by setting
the first three parameters to zero, e.g. eigenvalues(jmo) = g(0, 0, 0, jmo). All
values are those from the most recent SCF calculation. If no calculation has
been performed, 0.0 is returned along with an error message. This function
provides integrals, vectors and values relevant for configuration interaction
calculations

molecule_generate_gaussian_gjf(satom(), x(), y(), z(), natoms) as string returns a
gaussian input file based on the atom list in satom(1..natoms) and the cartesian
coordinates in x(), y() and z(). Note that gaussian input files use an extension of
.gjf or .com, and the gjf extension is used to differentiate between a gaussian
input file and a gif picture.

240

molecule_internal_coord(satom(), x(), y(), z(), natoms, R43, A432, T4321, n4, n3, n2,
n1) as string convert the cartesian coordinates in x(), y(), z() into internal
coordinates involving byref bond length R43, byref bond angle A432, and byref
dihedral angle T4321 for the set of atoms designated by n4, n3, n2 and n1. If
n1=0, then only R43 and A432 are returned. If n1=0 and n2=0 then only R43 is
returned. A string representation of the selected internal coordinates is also
returned by the function for printout.

molecule_internal_coordinates(satom(), x(), y(), z(), natoms) as string returns a list of
the internal coordinates of the molecule based on the x(1..natoms), y(1..natoms)
and z(1..natoms) cartesian coordinates. This method provides additional
redundancy in returning the internal coordinates relative to the minimal list
generated by molecule_xyz_to_internal().

molecule_internal_to_XYZ(satom(), x(), y(), z(), natoms, r43(), a432(), t4321(), n4(),
n3(), n2(), n1()) as string convert the internal coordinates involving bond
lengths (r43), bond angles (a432), dihedral angles (t4321) and n4(), n3(), n2(),
n1() atom pointers to cartesian coordinates in X(), Y() and Z(). The string that is
returned as a formatted list of the cartesian coordinates.

molecule_name as string assigns the name of the molecule prior to running a CNDO,
INDO or other molecular calculation with printout.

molecule_merge_hydrogen_charges(atom(), x(), y(), z(), Q(), natoms) Merges the
hydrogen charges into the heavy atom charges of those atoms to which the
hydrogens are bonded. The new charges are returned in Q(1..natoms).

molecule_multiplicity assigns as integer sets both the method and the multiplicity to
be used by subsequent SCF calculations. If set to 0, a standard closed shell
calculation is carried out on the closed shell ground state singlet state. If set to 1
or greater an open shell calculations is carried out for a multiplicity state equal to
molecule_multiplicity. Note that a closed shell ground state
(molecule_multiplicity=0) and an open shell singlet state
(molecule_multiplicity=1) should generate identical observables, except for
differences due to truncation error.

molecule_one_electron_hamiltonian(imo) as double returns the one-electron
Hamiltonian in Hartrees for an electron in molecular orbital imo based on the
previous SCF calculation. The electronic energy of a ground state molecule can
be calculated as etotal = 2*Sum[H1] + Sum*Sum[2*J - K] where the sums are
over all the occupied orbitals, and H1 is the one electron Hamiltonian over
molecule orbitals. This method returns the energy of an electron in the mo imo
associated with the interaction of that electron with the core nuclei. Note that
this integral is over molecular orbitals, not atomic orbitals.

241

molecule_opt_scf(atom(), x(), y(), z(), [Q(),] natoms, maxiter, dx, dy, dz) as double
returns the total energy after carrying out a single iteration of CNDO/2
(molecule_set_scf_method=2) or INDO (molecule_set_scf_method=1)
optimization based on changing the x coordinates by ±dx Angstroms, the y
coordinates by ±dy and the z coordinates by ±dz. If any delta is zero, that
coordinate is not optimized (i.e. make dz=0.0 if the molecule is rigorously in the
plane). This is a slow routine and should not be used for molecules with more
than about 12 atoms unless run on a very fast computer, or Q() is used to select
only some of the coordinates to optimize. It is appropriate to use smaller values
for maxiter (10-20) during course optimizations (dx>0.01) but increase to 100
near the minimum. The optional Boolean array, Q(1..natoms), allows the user to
specify which atoms are to be optimized. If Q(i) is true, the ith atom is
optimized, otherwise it is fixed at its current position. Set the molecule name by
assigning molecule_name. Set the molecule charge by assigning
molecule_charge. INDO optimizations can be carried out on hydrogen through
fluorine. CNDO/2 geometry optimizations can be carried out on molecules
containing the following atoms:
H, (1s orbital)
Li, Be, B, C, N, O , F (2s, 2px, 2py, 2pz)
Na, Mg, Al, Si, P, S, Cl (3s, 3px, 3py, 3pz, 3dz2, 3dxz, 3dyz, 3dx^y, 3dxy)

molecule_opt_scf_fast(atom(), x(), y(), z(), natoms, maxiter, eiter(), [[dr] or [dx, dy,
dz]]) as string returns the optimized coordinates from a fast analytical SCF
optimization which is not as accurate as molecule_opt_scf(...) but is significantly
faster for large molecules. Set dr (or dx, dy and dz) to the first iteration atom
shift. The atom shift values will be decreased as the method finds a variational
local minimum, where all atoms are optimized in full cartesian space, or
subspace based on dx, dy and dz. For example, if only dx and dy are assigned
(dz=0), then the optimization is limited to the x, y plane. Any combination is
allowed. The molecule will be rotated to optimize convergence, but the rotation
will be constrained by the choice of dx, dy and dz. The final coordinates are
returned in x(), y() and z() and the energies for each iteration placed in
eiter(1..maxiter). Set maxiter to values from 20 to 120, where lower numbers are
faster, but yield less optimal coordinates. The string that is returned gives a list
of the iterations, the shifts and the energy at each iteration.

molecule_orient(n1, n2, n3, x(), y(), z(), natoms) orient the cartesian coordinates

x(1..natoms), y(1..natoms) and z(1..natoms) by moving atom n1 to the origin,
atom n2 along the x axis, and atom n3 into the XY plane with positive y value. If
n3 is negative, perform a 180 rotation around x after orientation. If n2 is
negative, perform a 180 rotation around y after orientation.

242

molecule_plot_bonding(x(), y(), z(), eab(,), natoms, nx, ny, ioption, color_contrast)

The resolution of the analysis is defined by nx (horizontal points) and ny
(vertical points). Ioption=1, generate a plot2D representation of the bonding
where red is antibonding or ionic repulsion and blue is bonding.
abs(Ioption)=2, plot both a 2D (as above) and a contour plot with 30 contours,
Abs(ioption)=3, plot just a contour plot. color_contrast sets the contrast of the
plot2D coloring, where larger values enhance color density. bond energy colors
are forced below the contour lines. Following are examples:
// charge colors without contours:
molecule_plot_bonding(x(), y(), z(), Q(), natoms, 300, 100, 1, 4)
// charge colors with contours (30 contours assumed):
molecule_plot_bonding(x(), y(), z(), Q(), natoms, 300, 100, 2, 4)
// 30 contour lines without fill colors:
molecule_plot_bonding(x(), y(), z(), Q(), natoms, 300, 100, 30, 0) .

The following program section plots out the bonding analysis of propenal (acrolein)
using the function pictures_blend_to_buffer to superimpose the molecular diagram and
the bonding plot.

243

molecule_plot_efield((x(), y(), z(), Q(),
natoms, nx, ny, ioption, color_contrast)

plot the electrostatic field of the molecule
defined by the coordinates (x(1..natoms),
y(1..natoms), z(1..natoms)) in Angstroms and
the atomic charges, Q(1..natoms).

The resolution of the analysis is defined by
nx (horizontal points) and ny (vertical points).

if abs(Ioption)=1, generate a plot2D
representation of the field where red is excess
positive charge and blue is excess negative
charge,

if abs(Ioption)=2, plot both a 2D (as above)
and a contour plot with 30 contours,

 if abs(ioption)>2, plot just a contour plot
where abs(ioption) assigns the number of
contours.

If ioption is negative, then field contours are
calculated for atoms in the XY plane only.
abs(color_contrast) gives the contrast of the
plot2D coloring, where larger values enhance
color density.

 If color_contrast is negative, the contour
lines are plotted to approximate the
electrostatic field outside the molecule.

244

molecule_plot_eigenvector(imo, kspin, nx0, ny0, ncontours, color_fill_intensity)

Generate a 2D plot of molecular orbital number imo from the last closed shell
calculation (kspin=0) or the last open shell calculation in which case kspin
selects the alpha (kspin=1) or beta (kspin=2) manifold. The resolution of the
plot in pixels is given by nx0 and ny0. If nx0=ny0=0, default values of 300 and
150 are used. The number of contours is set by using ncountours, and the depth
of color in the fill is assigned by setting color_fill_intensity. The resulting plots
are approximate and rendered in the XY plane. The d orbitals are all rendered as
3s orbitals. Note that pz orbitals are not visible. Thus, to see the pi system,
either rotate the molecule rotate the molecule to transform the pz orbitals into px
or py orbitals, or use molecule_plot_pz_vector() A nice plot can be obtained by
using the following parameters:

molecule_plot_eigenvector(imo, kspin, 300, 150, 40, 2.0)

molecule_plot_pz_vector(imo, kspin, nx0,
ny0, ncontours, color_fill_intensity)
Generate a 2D plot of molecular orbital
number imo from the last closed shell
calculation (kspin=0) or the last open shell
calculation in which case kspin selects the
alpha (kspin=1) or beta (kspin=2) manifold.
The resolution of the plot in pixels is given
by nx0 and ny0. If nx0=ny0=0, default
values of 300 and 150 are used. The
number of contours is set by using
ncountours, and the depth of color in the fill
is assigned by setting color_fill_intensity.
The resulting plots are approximate and
rendered in the XY plane. This method
will only show orbitals which have pz
components, and will plot them by showing
a slice through the pz lobes. An example is
shown at right. A nice plot can be obtained
by using the following parameters:
molecule_plot_pz_vector(imo, kspin, 300,

150, 30, 2.0)

245

molecule_plot_space(x1, x2, y1, y2) assign the dimensions of the canvas in units of
the molecule coordinates such that the horizontal axis (x axis) goes from x1 (left)
to x2 (right) and the vertical axis goes from y1 (bottom) to y2 (top). It is
important to use this method to define the plot region prior to calling
molecule_plot_efield(). To revert to autodraw, execute molecule_plot_space(0,
0, 0, 0).

molecule_rotate(x(), y(), z(), natoms, Tx, Ty, Tz) rotates the coordinates in

x(1..natoms), y(1..natoms), z(1..natoms) returning values for rotation by Tx, Ty
and Tz rotations in degrees. The angles refer to rotation around axes, that is,
Tx=degrees of rotation around the x axis.

molecule_run_bond_energy_analysis(atom(), x(), y(), z(), natoms, maxiter, energy,

Q(), eab(,)) as string Run a standard SCF calculation and return the atomic
charges in Q(1..natoms) and the bond energy analysis in eab(1..natoms,
1..natoms). All other features and requirements as in molecule_run_scf() If a
plot of the bond analysis is desired, use molecule_plot_bonding().

molecule_run_psdci(numpiclosed, numpiopen, numsigmaclosed, numsigmaopen,
piatoms(), ioption [, ddom]) as string Run a configuration interaction
calculation on the molecule most recently run via the molecule_run_scf()
method. The SCF results are automatically transferred. The piatoms are listed
in the integer array piatoms(1..natoms) by setting piatoms(i)=0 (not pi atom) or
piatoms(i)=1 (pi atom). numpiclosed = the number of the highest energy closed
shell pi molecular orbitals to include in the CISD, and numpiopen = the number
of the lowest energy unfilled pi mos included in the CISD, numsigmaclosed =
the number of the highest energy closed shell sigma mos to include in the CIS,
and numsigmaopen = the number of the lowest energy unfilled sigma orbitals
included in the CIS, ioption=1 (CIS only), 2=(CISD without spin coupled
triplets), 3=(CISD including spin-coupled triplet-triplet double excitations). Add
10 to ioption to request additional output (the LSD determines the CI option).
The optional parameter ddom assigns the off-diagonal double-double multiplier.
This value is normally 1.0, but can be made smaller (for aromatic or small
conjugated systems) or larger (for large conjugated systems) to simulate
coupled-cluster methods including triple and quadruple CI. The variables
psdci_max_singles and psdci_max_doubles can be used to limit the number of
singles and doubles, respectively. Also, if psdci_max_doubles is set to a
negative number, the max number of doubles is automatically set equal to the
number of singles for a full CIS expansion.

246

molecule_run_scf(atom(), x(), y(), z(), natoms, maxiter [, energy, Q()] [, fock(,), puv(,
)]) as string calculate the SCF self-consistent-field for molecules, where
atom(1..natoms) gives the atom label (C, H, N, O etc.) x(1..natoms),
y(1..natoms) and z(1..natoms) are the cartesian coordinates in Angstroms,
maxiter sets the maximum allowed number of SCF iterations, and energy and
Q(1, , natoms) are optional (either both or neither). If the energy and Q()
parameters are left out, or if natoms is multiplied by -1, this function returns a
string which represents the complete output from the SCF calculation. If energy
and Q() are included, the total energy of the molecule in Hartrees is returned in
energy and the atom charges are returned in Q(1..natoms).

Set the molecule name by assigning molecule_name. Set the molecule charge by
assigning molecule_charge. Set molecule_set_scf_method=1 to use INDO, =2 to use
CNDO/2, and =0 to select INDO where possible and CNDO/2 otherwise. Set
Q_afaos_excited_singlet_state to true to calculate the electronic properties of the first
excited singlet state by using Averaged Field Approximate MO Theory. Set
molecule_multiplicity to a value larger than 0 to use open shell methods. The default
for this parameter is 0, which selects a closed-shell singlet state calculation. Setting
molecule_multiplicity to 1 (singlet) will force open shell methods to calculate the
lowest singlet state (use for testing, as the results should be identical to a closed shell
singlet). Set Q_use_external_parameters to true to read the parameterization from
the spreadsheet. To load the standard parameters into the spreadsheet, execute
atom_properties_cndo(0, "S", 0, S1) and then modify by hand. One can then store the
modified parameters as a data set for future use. The program only reads the
parameters in the first 7 columns. The values of U, I and A are ignored by the SCF
calculation. Occasionally, the SCF method fails to converge due to charge oscillation
during the variational process. Set Q_damp_scf to true prior to running the
calculations, and this will average the current with the previous Fock matrix prior to
diagonalization. Also, SCF failures can occur for other reasons. When they fail, try
using molecule_com_coords(), rotating the coordinates and/or switching the order of
the atoms. Each SCF calculation will populate the global string atomic_orbital_list
with a list of the atomic orbitals in the order generated by the atom list. If a string array
of these assignments is desired, use a statement like atomic_orb()
=string_split(atomic_orbital_list, ", ") , where atomic_orb() is a previously declared
string array.

The CNDO/2 and INDO calculations available via the molecule_run_scf,
molecule_opt_scf and molecule_opt_scf_fast statements provide INDO calculations
for the first row elements and CNDO/2 calculations for the first two rows of atoms. The
parameterization is based on that proposed by Pople and coworkers [J. Chem. Phys. 43,
S129-S151 (1965); 44, 3289-3296 (1966); 45, 2026-2033 (1967)]. These methods
include d orbitals for the second row elements. Averaged Field Approximate MO

247

methods are also available to calculate the properties of the first excited singlet state via
variational methods [J. Am. Chem. Soc. 95, 8241-8249 (1973)].

 H, (1s orbital)

Li, Be, B, C, N, O , F (2s, 2px, 2py, 2pz)
Na, Mg, Al, Si, P, S, Cl (3s, 3px, 3py, 3pz, 3dz2, 3dxz, 3dyz, 3dx^y, 3dxy)

Because there are various options available for constructing d orbitals, the figure

below is provided showing the full orbital basis set for chlorine. Note that while
virtually all semiempirical calculations use the same px, py and pz orbitals, there are
various options for d orbitals. The one used in MathScriptor differs from the original
basis sets proposed by Pople and coworkers [J. Chem. Phys. 43, S129-S151 (1965); 44,
3289-3296 (1966)].

248

Scriptor allows CNDO/2 and INDO calculations to be carried out using altered
parameterization by setting the Q_use_external_parameters to true and placing the
revised parameters in the appropriate location in the spreadsheet following the format
shown in the figure below:

The user should only manipulate values in columns 3-8 (but do not change the headers).
One can start by loading the default CNDO/2 parameters into the spreadsheet by
executing call atom_properties_cndo(1, "S", 1, s1), which generates the above
spreadsheet. Modify the variables either by hand or by using a program, making sure
that the changes are made in the correct location in the table. Save the spreadsheet for
use in future calculations if desired. Note that if any of the one center repulsion
integrals are changed, all two-center repulsion integrals will be calculated by using the
Ohno repulsion formula rather than the standard method, as the standard method is
based on s-orbital repulsion integrals. If the one-center values are changed, the use of
the s-orbital two-center repulsion values no longer makes sense.

249

Molecule_scf_dipole_moment(icomponent) as double returns the SCF dipole moment
in Debyes from the most recent SCF calculation. This result differs from the
results returned by molecule_dipole_moment(...) because the scf dipole moment
includes the sp and sd polarization terms which are only available from an SCF
calculation. The value of icomponent determines the component returned [0 or 4
= total, 1=mu(x), 2=mu(y), 3=mu(z)] .

Molecule_scf_eigenvectors(vectors(,), eigenvalues(), pop(), atm(), iatom_number(),

orbital_type(), norbs, kspin) returns the eigenvectors in vectors(1..norbs,
1..nmos), the eigenvalues in eigenvalues(1..nmos), the MO population in
pop(1..nmos), the atom number contributing the atomic orbital in
iatom_number(1..norbs), the atomic orbital type in orbital_type(1..norbs), the
number of orbitals in norbs. All of these values are returned byreference with all
arrays redimensioned accordingly. The only input parameter is kspin which if 0
requests the closed shell value, 1 requests the alpha open shell values and 2
requests the beta open shell values. The appropriate SCF calculation must be
run prior to calling this method.

Molecule_set_electron_mobility(pi_mobility, sigma_mobility) This method allows

adjustment of pi electron mobility and sigma electron mobility. The standard
values for both are 1.0. Del Bene recommends values of 0.585 (pi) and 1.000
(sigma) to improve the calculation of excitation energies. Setting both
parameters to 0.0 or 1.0 turns off electron mobility adjustment.

Molecule_set_repulsion_method = 0, 1, 2 or 3 If set to 0, standard CNDO/2 and

INDO repulsion methods are used unless the user has set
Q_use_external_parameters to true, which then forces the use of the Ohno
formula. If molecule_set_repulsion_method > 0, then this parameter selects
Ohno (=1), Mataga (=2) or Weiss (=3) integrals. The Weiss integrals should be
used when simulating Zindo methods.

Molecule_set_scf_method = 0, 1 or 2 If set to 1, SCF uses INDO methods. If set to 2,

SCF uses CNDO/2 methods. A default value of 0 uses INDO when possible but
switches to CNDO/2 if second row atoms are included.

250

Molecule_spin_densities as array This function returns the atomic spin densities from
the last SCF CNDO/2 or INDO open shell calculation. Use the statement
Qspin()=molecule_spin_densities to place the atomic spin densities (alpha spin
density minus beta spin density) into the double array Qspin(1..natoms). These
results can be plotted out by using the spin densities in place of the charges in
molecule_plot_efield(…) as shown in the example below:

 molecule_plot_efield(x(), y(), z(), Qspin(), natoms, 300, 100, 1, 2)
 call graphics_font("Arial", 120, false, true)
 graphics_forecolor(rgb(0, 0, 0))
 draw_string("Red indicates excess alpha density", 1500, 1800)
 draw_string("multiplicity = "+str(molecule_multiplicity), 1500, 1920)

Molecule_XYZ_to_compact(atom(), x(), y(), z(), natoms, ndigits) as string convert the

Cartesian coordinates in x(), y(), z() to a compact notation that uses array
statements. These statements not only assign the coordinates but redimension
the arrays. This statement is an excellent way to generate coordinates in a
compact form that can be inserted into a program.

Molecule_XYZ_to_internal(atom(), x(), y(), z(), natoms, r43(), a432(), t4321(), n4(),

n3(), n2(), n1()) as string convert the cartesian coordinates in x(), y(), z() into
internal coordinates involving bond lengths (r43), bond angles (a432), dihedral
angles (t4321). If n4(), n3(), n2(), n1() are filled with the atoms numbers these
values are used to determine the internal coordinates. If n4(1)=n4(2)=n4(3)=0,
then these are filled with the atom numbers associated with the abcd
assignments. The string that is returned is a formatted list of the internal
coordinates, which is convenient for printing using a non-proportional font.

251

Morse_eigenvalue(deev, wavnum, re, mu, v, byref ewav, byref vmax, byref r1, byref
r2) as double returns the energy of the vth vibrational level of a Morse
oscillator with dissociation energy, deev, in eV, fundamental frequency,
wavnum, in wavenumbers, equilibrium bond length, re, in Angstroms and
reduced mass mu in amu. Function returns the additional parameters ewav (level
energy in wavenumbers), vmax (maximum value of v, higher levels occupy the
continuum), r1 (the minimum classical bond length (Å) in level v) and r2 (the
maximum classical bond length (Å) in level v).

Morse_eigenvector(xr(), psi(), emorse(), eshift, r1, r2, v, npoints) returns the
eigenvectors of the quantum mechanical Morse oscillator based on the properties
assigned via a previous call to morse_eigenvalue(...). The wavefunction
[psi(1..npoints)] in units of 1/Sqrt[Å] (assuming eshift=0.0) and classical
potential function [emorse(1..npoints)] in eV are returned as a function of the r
values in xr(1..npoints). If eshift is non-zero, the wavefunction is returned
shifted in energy space by eshift so that the wavefunction can be displayed on
top of the morse potential. Once shifted, the wavefunction can no longer be used
to derive matrix elements of the Morse oscillator.

Mouse_down_x returns the x coordinate when the mouse button was first pressed
inside the graphics canvas in the Graphics Panel.

Mouse_down_y returns the y coordinate as above.

Mouse_position(ix, iy, ix0, iy0, ix1, iy1) returns the global pixel position of the mouse
in ix, iy (computer screen upper left is 0, 0). The program window upper left
edge is at ix0, iy0 and lower right edge is at ix1, iy1. All variables are integer
pixel values. The mouse button is ignored and data are always available.

Mouse_up_x returns the x coordinate when the mouse button was released inside the
graphics canvas in the Graphics Panel

Mouse_up_y returns the y coordinate as above. Note that the mouse_down and
mouse_up data are only valid when Q_mouse_data_available is true.

|MS| Mult(s1, s2) as string returns s1*s2 using arbitrary precision string arithmetic

New keyword used to instantiate a class variable (see class).

Next part of For...Next statement. This statement increments the loop variable and
exits the loop if the looping is complete.

Nil an internal variable representing an undefined or invalid value.

252

NthField(s0, delimiter, ith_field) as string returns the ith field within the string s0
delimited by the string delimiter specified. Use countfields to figure out how
many fields are available.

Numerical_best_spacing(x(), y(), npoints) as integer returns the best value for nwidth

to be used in the numerical routines below. The value is based on an analysis of
the data in the arrays x(1..npoints) and y(1..npoints. The value is based on
finding the best compromise value of one that is large enough to minimize
truncation error and noise yet small enough to preserve the fine structure within
the derivatives. The value returned is an estimate and trial and error coupled
with visual inspection of the derivatives may be necessary.

Numerical_complexity(x) as integer returns the numerical complexity of a double.

This function is used to determine the best choice for axis increments, data set
increments, or other lists or data sets where one wants to avoid using unnatural
increments. For example, a data set that has x values 200.0, 200.2, 200.4, … is
much easier for a human to work with than 200.0, 200.19765, 200.3953, … .
The sign of the value is ignored. All integers have complexity 0 (if even) or 1 (if
odd). All real numbers have complexities that range from 1 to 19 based on the
number and nature of digits to the right of the decimal points.

Numerical_derivative(x(), y(), yd(), npoints, nwidth, nderiv) generate the nderiv

derivative of the data set x(1..npoints), y(1..npoints) and put the derivative into
yd(1..npoints). This routine calculates the 0th, 1st, 2nd, 3rd and 4th derivative
and does not assume that the x() data are equally spaced. The nwidth parameter
allows you to spread out the window by skipping nwidth data points, which
serves to smooth the data. Choose nwidth to be roughly double the number of
points that you would need to average to get rid of the noise. It is recommended
that numerical_best_spacing be run to assign an estimate for nwidth.

Numerical_double_data(x(), y(), npoints, [nwidth]) use optimized interpolation to

double the data in the data set x(1..npoints), y(1..npoints). The first three
parameters are byref and are changed by this routine so that upon exit npoints is
roughly doubled and the new data replace the original data. This routine also
selects the delta x increment to have a minimal numerical_complexity and unless
you include the optional parameter, nwidth, this routine uses
numerical_best_spacing to select the interpolation width. Accordingly, if the
data set is very noisy or jagged the data are smoothed. If less smoothing is
desired, enter a user value of nwidth closer to 1 (no smoothing at all).

253

Numerical_fit_to_gaussians(xkk(), y(), n, nbands, niter, xp(), yp(), x1, x2, np [,
sharpen]) as string fit the spectrum in wavenumber space to gaussians. The
spectrum to fit is in y(1..n) as a function of wavenumber in kiloKaysers (1000
cm^-1) in xkk(1..n). The initial number of gaussians is assigned via nband, but
this variable may be reduced during the fit if fewer gaussians are needed. The
total number of iterations is set by niter (500 is usually sufficient). The spectrum
based on the sum of gaussians is returned in xp(1..np) and yp(1..np) from x1 to
x2, which also must be in kK. If the optional parameter sharpen is included, the
spectrum in xp(), yp() can be sharpened (>0.0 to 0.75) or broadened (<0.0 to -
0.9).

Numerical_fraction(f1, ndigits) as string converts a real number to its equivalent
fraction, or a fraction that reproduces the number to an accuracy of ndigits. The
string that is returned includes the fraction as well as the expansion of the
fraction to a precision of 32 digits. A maximum of 15 digits of precision is
allowed.

Numerical_generate_expression(target, ndepth) as string return an expression, f(...),
that provides the best fit to the target. This function not only assigns the
function but the values of parameters of that function, and minimizes the error
given by abs(f(...)-target)/abs(target). Expressions examined include
(k1/k2)*exp((k3/k4)*pi^(k5/k6)), (k1/k2)*log((k3/k4)*pi^(k5/k6)),
k1*sin(k2*pi/k3), k1*cos(k2*pi/k3), (k1/k2)*const_pi^(k3/k4), and
(k1/k2)*(k3!/k4!) where k1..k6 are all integers which can be different for each
expression. The value of ndepth controls the depth of the search and assigns the
maximum value for the integers in the expressions. If ndepth is negative, the
depth of search is equal to abs(ndepth) but the best expression for each type is
listed for comparison. This function is useful whenever a calculation yields a
value which you suspect is represented by one of the above expressions. Values
of ndepth=15 provide a fairly rapid search and are the minimum ndepth used
regardless of input. Ndepth values above 15 take progressively longer such that
ndepth=100 will take many hours. The target should be in the range ±(0.01 to
ndepth) for this method to explore all of the expressions listed above.

Numerical_interpolate(x0, x(), y(), npoints, nwidth) as double uses a five point
interpolation function to calculate values of y as a function of x0. The
interpolation is based on the same polynomial expansion as used in
numerical_derivative. It is recommended that numerical_best_spacing be run to
assign an estimate for nwidth.

numerical_interpolate_points(x(), y(), n, xp(), yp(), np, nlevel) transfer the sparse
x(1..n), y(1..n) arrays into dense xp(1..np), yp(1..np) arrays by using 2, 3, 4 or 5
point Lagrangian interpolation, as set by nlevel. The value of np on entry is the
desired size, but it may be changed slightly to accommodate the process, so it is
a byref parameter.

254

Numerical_maxent_extend(pdata(), pdnew(), lpc(), ndata, ncoef, knew, iap) extends
a periodic data set pdata(1..ndata) and places the result in pdnew(1..knew),
where knew is the number of extended data points. This routine requires the
linear prediction coefficients, lpc(1..ncoef), provided by
numerical_maxent_lpc(..). The pdnew(1..knew) data can be apodized by
selecting iap>0 (0=none, 1=linear, 2=convex, 3=concave). If iap<0, then this
method returns the apodization in pdnew(1..knew).

Numerical_maxent_lpc(pdata(), lpc(), xms, npdata, ncoef) returns ncoef linear

prediction coefficients in the array lpc(1..ncoef) based on an analysis of the
periodic data in pdata(1..npdata). Also returns the xms, the mean-square-
discrepancy between the lpc predicted versus observed periodic data.

Numerical_maxent_spectrum(fdt, lpc(), xms, ncoef) as double returns the intensity

of the power spectrum at fdt, where fdt is the frequency times the sampling
interval of the periodic data that was used to generate the linear prediction
coefficients. fdt should lie within the Nyquist range from -0.5 to 0.5. The
lpc(1..ncoef) and xms parameters are those returned from
numerical_maxent_lpc(...).

Numerical_normalize(y(), npoints, Qinvert, Qnorm) invert and/or normalize the data in

y(1..npoints. If Qinvert is true, then prior to normalization the data are all
multiplied by -1 (i.e. inverted). If Qnorm is true, the data are normalized so that
the minimum value is 0.0 and the maximum value is 1.0.

Numerical_normalize_integral(y(), n, dx, target) normalize the integral of y(1..n)

where n is the number of elements, dx is the x spacing between the elements, and
target is the value of the integral to be numerically achieved. A simple
summation integration is carried out assuming equal spacing in x(1..n) where
dx=x(2)-x(1)=x(n)-x(n-1).

Numerical_point_in_polygon(x1, y1, xp(), yp(), np) as boolean returns true if the

coordinates x1, y1 are within the closed polygon defined by xp(1..np), yp(1..np).
Np is an integer. All other parameters must be all doubles or all integers. The
polygon can by highly complex in shape.

Numerical_smooth(y(), npoints, nsmooth) smooth the data in y(1..npoints) by a 3 to

101 point smoothing function set by nsmooth. If nsmooth is not odd, it is
adjusted to the nearest odd value. Values of nsmooth of 3, 5, 7, 9, 11 and 13 use
optimized methods that are very fast. Values of 15 and higher use slower
methods. The method can also smooth a two-dimensional array, y(1..nx, 1..ny),
by calling numerical_smooth(y(), nx, ny, ntimes), where ntimes is the number of
smoothing iterations all carried out at nsmooth=3.

255

Numerical_spectral_enhance(x(), y(), ye(), n [, a2, a4, n24width, ns24, gaus0,
gauswidth]) enhance the resolution of the spectrum x(1..n), y(1..n) by using
derivative methods. The original spectrum is enhanced by subtracting the
second derivative and adding the fourth derivative. The weights (a2 and a4),
widths (n24width) of the numerical derivatives, and smoothing (ns24) are all
varied by trial and error. In addition, a section of the spectrum can be selectively
enhanced by providing values for gaus0 (center) and gauswidth (FWHM) in the
same units as x(1..n). If only the first four parameters are included, a window is
opened and the user can manipulate the various parameters in real time to see the
effect.

Oct(i) as string returns the octal equivalent of the integer i in string format.

Open_all_user_pictures(filenames(), nx(), ny(), filename_filter, nxmax, nymax) as

integer returns the number of picture files in the user_pictures folder that satisfy
the filename_filter criterion (see below) and places each of the valid pictures into
the pictures set (1..ntotal), where ntotal is the value returned by the function. For
the ith picture the arrays return the string filename(i), the pixel width nx(i) and
the pixel height ny(i). The user can limit the size by setting nxmax and nymax to
the maximum dimensions allowed. If the picture is larger, it is scaled down to
be within the maximum dimensions while maintaining aspect ratio. These
variables should be set to zero if no size constraints are desired. The string
filename_filter, if assigned a non-null string, will be used to select only those
files with names including the filename_filter. For example, if one wants only
jpeg files, then filename_filter = “.jpg”. If one only wants files that include the
name “fruit”, then filename_filter = “fruit”. The string only needs to be found
somewhere within the filename. Because all of the filenames are returned in
their entirety, more sophisticated searching can be done after loading the initial
set of pictures.

Open_picture_conversion_window when this statement is executed the program

opens up a modal window that allows the user to open a picture, manipulate the
picture, and return the picture to the buffer (or if multiple buffers have been
created, to buffer number 1).

256

Open_user_data_file(ifilenumber, filename) as Boolean this routine goes to the
folder data_files, counts the number of files inside, and then uses the ifilenumber
to open the ith file. The filename is returned in the string variable filename, and
provided the file is of the correct type (*.cet) the data are loaded into the
spreadsheet within the data set panel. If ifilenumber is 0 and the filename=""
then the function returns the number of files found in the folder in ifilenumber.
If ifilenumber is 0 then the filename is used and that file is opened and loaded
into the spreadsheet. If file_number=0 and filename="unknown" then a
dialogue is opened and the user can select the file to open. If the process fails
for any reason, the function returns false.

Open_user_picture_file(ifile_number, filename[, idestination]) as Boolean operates in

a fashion identical to the open_user_text_files routine but goes to the
user_pictures file and then loads the picture into the buffer. If multiple buffers
have been created, then the picture is loaded into buffer 1. If the optional
parameter idestination is included, it designates the picture slot into which you
want to place the opened picture. The picture file must be created prior to
calling this routine.

Open_user_text_file(ifilenumber, filename, filecontents) as Boolean this routine goes

to the folder user_files, counts the number of files inside, and then uses the
ifilenumber to open the nth file. The filename is returned in the string variable
filename, the entire contents of the file is returned in filecontents. If file_number
is 0 then the filename="" then the function returns the number of files found in
the folder in ifilenumber. If ifilenumber is 0 then the filename is used and that
file is opened. If ifilenumber=0 and filename="unknown" then a dialogue is
opened and the user can select the file to open. If the process fails for any
reason, the function returns false.

257

Oscillator_strength(mass, mass_units, dEmn, eunits, Rmn, runits, byref lifetime,
iprint) as double returns the dimensionless oscillator strength for a system where
mass is the mass of the particle or reduced mass of the oscillator undergoing the
m->n transition. The units of mass are passed in the string munits (amu, g, kg,
au). DEmn is the transition energy or wavelength determined by the units
passed in eunits (eV, J, aJ, 1/cm, kK, GHz, THz, Hartree, au, kcal/mol, kJ/mol),
Rmn is the transition length or transition dipole moment, with runits determining
which is being passed (A, cm, m, eA, D, au). Note that for all units, case is
ignored, and angstrom should be entered using A, not the symbol Å to avoid
parsing problems. The intrinsic lifetime of the n-->m transition is returned in
seconds. This number should be multiplied by the quantum yield of emission to
estimate the observed lifetime. iprint=0 (no commentary), 1 (minimal
comments), or 2 (full reporting)

Pause(ms as integer) pause program for a minimum of ms milliseconds and updates
the current window so that graphics and printed output is displayed fully. If all
you want to do is update the display, you can call Pause(0). This function also
scrolls the text output cursor to the last character in the output windows.

258

Phidgets are electronic boards that connect to the computer via usb. MathScriptor
versions above 2.0 have the following statements which can be used to control and get
information from selected phidget boards. For more information on the available
phidget boards visit http://www.phidgets.com. To emphasize that these statements are
only available in version 2.0 and above, a |Ph| symbol is added to the left of the
keyword. A phidget board cannot be used until it is first opened by calling the
appropriate method with icontrol=999 (if there is only one board) or icontrol=-
serial_number (if there are multiple boards). The serial numbers of the boards can be
deduced by printing out phidget_list (then remember to add a minus sign in front and
assign it to icontrol). Properties of the objects to be controlled are assigned during open,
where appropriate. All subsequent calls use icontrol to select ports or control other
properties as described above. The board will stay attached until it is closed using
icontrol=-1. Any relays or outputs that are activated will be turned off when the device
is closed. Only one board of a given type can be attached at a time with the exception of
the 8/8/8 interface board (see phidget_interface888_2nd(...) for details). If you are
having trouble communicating with the phidget boards, make sure you have run the
Phidget 21 installer (www.phidgets.com/drivers.php) on the current computer and
verified that the phidget monitor, which is installed with the drivers, can find and
manipulate the boards. It is often necessary to exercise the boards using the monitor to
bless the communication process. Also verify that the phidget framework has been
loaded by running Test Mathscriptor Environment under the Compiler menu and
observing the statement "Phidget framework has been found and loaded."

Fast Output Pulse Option. Some interfaces support the fast output pulse option, and
this fact will be indicated in the last sentence of the command description. To use this
capability, set the icontrol parameter to 9xxmmmm where xx=the output port and
mmm.m=milliseconds pulse duration. Use the code icontrol= 9000000+ 10000*kport
+msx10, where kport is the output port and msx10 is the activation time in increments
of 0.1 ms. Thus, to activate output 3 for 0.1 millisecond, set icontrol=9030001. If
multiple ports need to be activated in fast pulse mode, set kport=99, and the Qout()
array (or vout() for the analog board) will be used to set the states or values. If a value
of 0 ms is selected (i.e. 90300000), the output is pulsed as fast as possible. An estimate
of the actual output activation time is returned. Note for boards using mechanical relays,
a mechanical latency of 30ms or more is common. Thus, if the relay is not closed for a
time greater than the latency, the relay is not activated at all. If faster relays are required
(<30 ms), the 0/16/16 board is recommended. The short pulse option also works for
generating voltage pulses using the phidget_analog() method. When using kport=99 to
fire multiple ports recognize that a modest latency of about 0.1 ms is introduced. It
should be noted that while the computer interface may support this option, the board
may have additional latency. Many phidget boards can only generate 1 ms or longer
pulses. Examples of phidget boards that can be controlled via MathScriptor are shown
on the next page.

259

260

|Ph| phidget_analog(icontrol, vout()) Opens an attached phidget analog board

(icontrol=999) and on subsequent calls, sets the state of the four output voltages
(icontrol=1) where vout(i)=output voltage, where i=0, 1, 2 or 3. Outputs are
limited to -10 to 10 VDC with 12 bit (4.8mV) resolution and 20mA max current
(aim for 5mA for voltage accuracy). When done, call this method with
icontrol=-1, to close the interface. This interface supports the fast output pulse
option.

|Ph| phidget_interface004(icontrol, Qrelay()) Opens an attached phidget

InterfaceKit 0/0/4 (icontrol=999) and on subsequent calls, sets the state of the
four relays (icontrol=1) where Qrelay(i)=true to turn relay i on, Qrelay(i)=false
to turn relay i off, where i=0, 1, 2 or 3. Note the first relay is 0, not 1. When
done using the interface, call this method with icontrol=-1, to close the interface.
This interface supports the fast output pulse option.

|Ph| phidget_interface008(icontrol, Qrelay()) Opens an attached phidget

InterfaceKit 0/0/8 (icontrol=999) and on subsequent calls, sets the state of the
eight relays (icontrol=1) where Qrelay(i)=true to turn relay i on, Qrelay(i)=false
to turn relay i off, where i=0, 1, 2..7. Note the first relay is 0, not 1. When done
using the interface, call this method with icontrol=-1, to close the interface. This
interface supports the fast output pulse option.

|Ph| phidget_interface01616(icontrol, Qin16(), Qout16()) as string Opens an

attached phidget InterfaceKit 0/16/16 (icontrol=999). Subsequent calls either set
or read the state of the 32 digital I/O channels. To read the inputs set
icontrol=0, and the digital inputs are returned in Qin16(0, 1, 2, 3, 4 ... 15) as
booleans (where true means the a voltage between 4-30 VDC has been applied to
the input). To set the digital outputs set icontrol=1, and pass the desired output
states in Qout16(0, 1, 2, 3, 4, 5, 6 and 7) as booleans (where true means the
output has been shorted to ground). Outputs can handle 2amps at 30VDC. When
done using the interface, call this method with icontrol=-1, to close the interface
board. This interface supports the fast output pulse option.

261

|Ph| phidget_interface222(icontrol, Qin2(), Qout2(), analog_in()) as string Opens an
attached phidget InterfaceKit 222 (icontrol=999). Subsequent calls either set or
read the state of the 6 I/O channels. To read the inputs set icontrol=0, and the
digital inputs are returned in Qin2(0, 1) as booleans (where true means the open
collector input has been set to ground), and the analog inputs are returned as
integers in analog_in(0, 1). The analog inputs measure voltages from 0 to 5
VDC. The value returned is scaled to 0-1000 (Q_phidget_raw=false) or 0-4095
(Q_phidget_raw=true). The analog inputs will measure the absolute voltage (0-
5VDC) as (0-1000) if Q_phidget_ratiometric=false, or (0-Vpwr) as (0-1000) if
Q_phidget_ratiometric=true. To set the digital outputs set icontrol=1, and pass
the desired output states in Qout2(0, 1) as booleans (where true means CMOS
output is high). When done using the interface, call this method with icontrol=-
1, to close the interface and release the asynchronous monitoring of the inputs.

|Ph| phidget_interface888(icontrol, Qin8(), Qout8(), analog_in()) as string Opens

an attached phidget InterfaceKit 888 (icontrol=999). Subsequent calls either set
or read the state of the 24 I/O channels. To read the inputs set icontrol=0, and
the digital inputs are returned in Qin8(0, 1, 2, 3, 4, 5, 6 and 7) as booleans
(where true means the open collector input has been set to ground), and the
analog inputs are returned as integers in analog_in(0, 1, 2, 3, 4, 5, 6 and 7). The
analog inputs measure voltages from 0 to 5 VDC. The value returned is scaled
to 0-1000 (Q_phidget_raw=false) or 0-4095 (Q_phidget_raw=true). The analog
inputs will measure the absolute voltage (0-5VDC) as (0-1000) if
Q_phidget_ratiometric=false, or (0-Vpwr) as (0-1000) if
Q_phidget_ratiometric=true. To set the digital outputs set icontrol=1, and pass
the desired output states in Qout8(0, 1, 2, 3, 4, 5, 6 and 7) as booleans (where
true means CMOS output is high). When done using the interface, call this
method with icontrol=-1, to close the interface and release the asynchronous
monitoring of the inputs. This interface supports the fast output pulse option.

|Ph| phidget_interface888_2nd(icontrol, Qin8(), Qout8(), analog_in()) as string
Opens the second 8/8/8 interface when two 888 interface boards are attached.
Identical in performance and calling procedures as phidget_interface888(...) but
always manipulates the 2nd of two 8/8/8 boards. The second board must be
opened first, as it must open the first board, lock it, and then open the second
board subsequently closing the first. This statement can also be used to help
open an 8/8/8 when other interface boards are attached and show up in the list
above the 8/8/8 board.

|Ph| phidget_list as string returns a string listing all of the attached Phidgets and

their serial numbers. If you have multiple boards of the same type, you must
assign them in the order given by this list. Note that each board has a unique
serial number.

262

|Ph| phidget_servo(icontrol, set_to_position, kservo_type() [, microsecond_min(),

microsecon_max(), degree_range(), velocity_max()]) as string Opens the
Phidget Advanced Servo(icontrol=999) and assigns the servo parameters either
using the kservo_type(0...7) integer array or via the four optional arrays
(values are used when kservo_type=99). Subsequent calls assign the position
of the ith servo by setting icontrol to the servo port (0, 1, 2, 3..7) and assigning
set_to_position to the target degrees (or extension for linear servos). The
method will not return until the servo has reached the destination. When done
using the servos, it is important to close the servo board by calling this method
with icontrol=-1. If the optional parameters are included, then all subsequent
calls must include these parameters, because static variables are used within
the overloaded methods.

The array servotype(iport_number) assigns the servo type integer for each of the

connected servos:
 0 (No servo is connected to port)
 1 (Futaba FP-S148, range= 0-220°, vmax=240°/s)
 2 (raw microsecond mode)
 3 (Hitec HS322HD, range= 0-180°, vmax=316°/s)
 4 (Hitec HS5245MG, range= 0-145°, vmax=400°/s)
 5 (Hitec 805BB, range= 0-180°, vmax=316°/s)
 6 (Hitec HS422, range= 0-180°, vmax=286°/s)
 7 (Towerpro MG90, range= 0-175°, vmax=545°/s)
 8 (Hitec HSR1425CR, range= 0-100°, vmax=500°/s)
 9 (Hitec HS785HB, range= 0-2880°, vmax=225°/s)
 10 (Hitec HS485HB, range= 0-180°, vmax=272°/s)
 11 (Hitec HS645MG, range= 0-180°, vmax=300°/s)
 12 (Hitec 815BB, range= 0-180°, vmax=250°/s)
 13 (Firgelli linear servo L12R, range= 0-30 mm, vmax=23 mm/s)
 14 (Firgelli linear servo L12R, range= 0-50 mm, vmax=12 mm/s)
 15 (Firgelli linear servo L12R, range= 0-50 mm, vmax=5 mm/s)
 16 (Firgelli linear servo L12R, range= 0-100 mm, vmax=23 mm/s)
 17 (Firgelli linear servo L12R, range= 0-100 mm, vmax=12 mm/s)
 99 (servo properties passed via 4 double arrays during the open operation):
 [microsecond_min(), microsecond_max(), degree_range(), velocity_max()])
 where microsecond_min(i)= The minimum supported PCM in microseconds,

microsecond_max(i)= The maximum supported PCM in microseconds,
degree_range(i)= The degrees of rotation defined by the given PCM range, and
velocity_max(i)= The maximum velocity in degrees/second.

263

|Ph| phidget_stepper(icontrol, position(), maxcurrent(), maxvelocity()) as string
Opens the Phidget Unipolar Stepper interface board (icontrol=999) and assigns
the properties of up to four stepper motors attached. During open, the int64
position() array assigns the starting position of the 0, 1, 2 and 3 steppers.
Maxcurrent() and maxvelocity() are double arrays which assign the
corresponding maximum current in amps and the maximum velocities in
steps/second for each of the stepper motors. If a port has no stepper attached or
the stepper is to be kept inactive, set maxcurrent(i)=0.0. Subsequent calls allow
the stepper to be positioned by assigning position(i) for each of the i steppers and
then calling this method using either icontrol=stepper number or icontrol=99 to
move all motors to the desired position() set. The board will continue to provide
current to the stepper to hold the stepper in position until closed. To close the
interface and release the steppers, execute this method after setting Icontrol = -1.
The method reports on progress and positions in the returned string.
(Application note= unlike servos, stepper motors draw current even when
stopped. The power supply should provide the correct voltage for the motor, and
be capable of providing the total current for all steppers attached. Current is
only supplied to the level assigned by maxcurrent(), but if the power supply
lacks the current capability, the stepper motor will skip steps. This interface is
not smart, and will not know if a stepper has skipped a step. It is a good idea to
use limit switches and a phidget_interface (8/8/8 or 0/16/16) to monitor position.

|Ph| phidget_textLCD(icontrol, row1, row2) as string Opens an attached phidget

LCD Text display (icontrol=999). Subsequent calls set the two rows of text
where row1 is a string containing the top 20 characters and row2 is a string
containing the bottom 20 characters. The contrast is set by assigning icontrol to
values from 1 - 255 (125 is nominal), and the brightness is set by assigning
icontrol a value from 500 - 755 (650 is more than adequate). If the phidget is a
combination LCDText and 8/8/8 interface board, this method only controls the
LCD portion.

264

pictures_blend_to_buffer(ipicture1, fraction1, ipicture2, fraction2) as boolean blends
two pictures and places the result into the buffer (or buffer 1 if multiple buffers
exist). Thus, buffer(1) = fraction1*picture(ipicture1) +
fraction2*picture(ipicture2), where fraction is a double between 0 and 1, and the
pictures must be of the same size. A simple way to blend two pictures is to
create the first one in the buffer, then use buffer_copy_to_picture(ipicture1).
Create the second and use buffer_copy_to_picture(ipicture2). Note that if both
fractions are set equal to 1.0, white space will dominate and in most cases, a
blank white picture will result. Best results are obtained when
fraction1+fraction2=1.

pictures_clear_all clears all the pictures from memory and allows new pictures to be
loaded with sizes determined by the new properties. Pictures are static objects
that persist after a program has been closed. Hence, it is important to use this
method to make sure each session starts without any pictures remaining from
previous runs unless the user plans to make use of this capability.

picture_copy_to_buffer(ipicture) copies picture number ipicture into the buffer on a 1-

to-1 pixel ratio starting at the upper left.

picture_create(ipicture, nwidth, nheight, Qtransparent) creates a new picture file in the

picture slot ipicture with size nwidth by nheight. If Qtransparent is true, pure
white becomes transparent. Pure white is RGB(255, 255, 255). You can use the
picture conversion window, available under the Edit menu, to manipulate the
location and amount of transparency for any given picture. You can create as
many pictures as memory allows, but it is important that the picture slots be
created in order from low to high.

picture_height(ith_picture) as integer returns the pixel height of the ith_picture (if it
exists) or returns -1, if the ith_picture does not exist.

picture_make_transparent(ith_picture) makes the ith_picture transparent. If the value

of ith_picture is negative, the abs(ith_picture) is made non-transparent, which
means that purewhite is now solid. This function does nothing if the ith_picture
has not yet been created. An example is shown in the figure below.

picture_width(ith_picture) as integer returns the pixel width of the ith_picture (if it
exists) or returns -1, if the ith_picture does not exist.

265

266

picture_write(isource, targetx, targety [, destwidth, destheight, sourcex, sourcey,
sourcewidth, sourceheight]) draws picture number isource into the buffer.
TargetX and TargetY are the upper left hand pixel coordinates. If no other
parameters are included, then the entire picture is written into the target at
targetx and targety. One can, if desired, include another six parameters to
designate the size of the window and the portion of the picture you want to draw.
Destwidth and destheight set the size of the window into which you want to
write the picture. Sourcex, sourcey, sourcewidth and sourceheight set the upper
left hand corner and size of the picture area you want to copy into the window
previously defined. The sizes and aspect ratios need not be the same and thus
your picture, or picture section, can be compressed or skewed to accommodate
the target window. The picture on the previous page illustrates the concepts of
both picture_write and transparency. You can duplicate this exercise by running
template_picture_transparency.txt.

const_Pi as double internally defined constant =3.141592653589793. If you want

more significant digits, use arprec_pi as string to return as many digits as was
previously assigned using arprec_set_precision (see above).

plot3D(z(), theta, phi, xzoom, yzoom, [ioption] or [cz()]) plots a three dimensional

representation of the 2D double array z(1..ubound1, 1..ubound2) from a view
direction of theta and phi degrees (20, 20 usually works) with size options
determined by xzoom and yzoom (start with 1, 1). The last parameter is either
ioption or a 2D array of colors the same size as z(,). Ioption selects transparent
mesh (0), wire frame (1), gray scale (2) or color (3).

plot3d_xshift assigns as integer assigns the x axis offset shift of the 3D plot. A

positive value shifts the plot to the right.

plot3d_yshift assigns as integer assigns the y axis offset shift of the 3D plot. A

positive value shifts the plot up.

267

Comparison of four methods of plotting data in a two-dimensional array.

Plot_2d_array(a2(), n1, n2, ioption, imod, Qzero) plot the values of the two-

dimensional array a2(1..n1, 1..n2) or if Qzero is true, a2(0..n1-1, 0..n2-1) where
ioption provides for the option of apodization (ioption=0, 1=none, 2=triangular
(linear) ww = 1 - (rxy/rxymax), rxymax = (nxbasis-center) = center,
3=lorentzian (quadratic) ww = 1 - rxy^2/rxymax^2 = 1 - rxy^2/center^2,
>3=gaussian (exponential) with fwhm = 1/ioption (1/4, 1/5, etc.), if negative, the
apodization is based on abs(ioption) but the absolute value is plotted. The
parameter imod selects the modulus of the display (min=1, max=4). Add 100 to
ioption if you want gray scale.

Plot_contour(a2(), mxz, nyz, ncontours, linewidth, ioption) Generate a contour plot

into the buffer of the data in a2(1..mxz, 1..nyz) where ncontours = number of
contours, linewidth = linewidth of the contour lines and ioption = 0 (plot on top
of white), 1 (plot on top of background color), 2 (plot on top of whatever was
already there). Use ioption=2 if you want to plot a contour on top of a
plot_2d_array display.

268

plot_dashed_data(x(), y(), npoints, line_thickness, line_color, L1, S1, L2, S2) identical
in function to plot_more_data except the line that is plotted is dashed. The dash
lengths are L1 and L2 and the intervening spaces are S1 and S2. For a simple
dash, L1=S1=L2=S2. All values are in buffer pixels. If L1, S1, L2, S2 are
replaced with two parameters: [L1, nresolution], a simple dashed line is
generated with line lengths L1 and equal separating spaces of L1. Nresolution
gives the number of points used in the total path expansion, and should be about
2000 or more, depending upon the sharpness of the peaks. The sharper the
peaks, the higher the nresolution required.

plot_dashed_line(x1, y1, x2, y2, line_thickness, line_color, L1, S1, L2, S2) plot a
dashed line from x1, y1 to x2, y2 of thickness line_thickness and color
line_color. The dash lengths are L1 and L2 and the intervening spaces are S1 and
S2. For a simple dash, L1=S1=L2=S2. All values are in buffer pixels.

Plot_data(x1() , y1(), npoints, x1, x2, y1, y2, xlabel, ylabel, gridlevel) plot data in
x1(1:n) and y1(1:n) from x1, x2 and y1, y2. The axes labels are given via strings
xlabel, ylabel and a background grid can be added using 0<= gridlevel<= 1.0

Plot_data_point(x, y, s0, ilocation, symbol_type, symbol_size, symbol_color) plot an
individual data point using the axes generated from a previous call to plot_data.
Each data point is plotted using one of 12 symbol_types as shown in the figure at
right. The size in pixels is controlled using symbol_size and the color is set
using symbol_color. You can label each data point using the string s0 and the
ilocation integer symbol
1(upper left), 2(above), 3
(upper right)4 (at left), 5 on
top, 6 (at right), 7 (lower left),
8 below, 9 (lower right). The
font name and font size as
specified by graphics_font.
The figure was created using
demo_plot_data_points.txt.

269

Plot_dashed_data(x(), y(), npoints, line_thickness, line_color, L1, S1, L2, S2) identical
in function to plot_more_data except the line that is plotted is dashed. The dash
lengths are L1 and L2 and the intervening spaces are S1 and S2. For a simple
dash, L1=S1=L2=S2. All values are in buffer pixels. If L1, S1, L2, S2 are
replaced with two parameters, L1, nresolution, a simple dashed line is generated
with line lengths L1 and equal separating spaces of L1. Nresolution gives the
number of points used in the total path expansion, and should be about 2000 or
more, depending upon the sharpness of the peaks. The sharper the peaks, the
higher the nresolution required.

Plot_data_points(x1(), y1(), n, symbol_type, symbol_size, symbol_color) plot data in

x1(1:n) and y1(1:n) as individual symbols following the parameter methods
previously described for plot_data_point. In the present case, however, one
cannot label the individual data points.

plot_data_points_with_errors(x(), y(), yerror(), npoints, symbol_type, symbol_size,

symbol_color, error_bar_type) plot data points including a vertical error bar.
All parameters defined as in plot_data_points except yerror(1..npoints) gives the
total length of the errorbar in units of y, and error_bar_type specifies the type of
error bar (0=single line, >0=width of horizontal lines at top and bottom of error
bar in pixels).

plot_data_with_xstrings(x(), y(), npoints, x1, x2, y1, y2, xlabel, ylabel, gridlevel, sx(),
xshift) identical to plot_data() but with two added parameters at the end. sx(1..n)
as string is an array containing the x axis max tick labels where sx(1) is at x=1,
x2(2) is at x=2, etc. The xshift parameter allows the labels to be shifted to the
left (xshift<0) or to the right (xshift>0) relative to the major ticks. The user must
execute plot_set_ticks(1, 1, ysmall_tick, ymajor_tick) first.

Plot_fontname as string set the fontname for plot_data. This function should only be

used when the user is sure that the fontname assigned is present as no error
checking is done during assignment. The plot font can also be adjusted by using
the statement graphics_font(font_name, isize, Qitalics, Qbold), which returned
true if the font_name is available on the current computer.

Plot_fontsize as integer set the fontsize for plot_data. The easiest way to adjust the

size of the plot text when the font does not need to be altered.

270

Plot_histogram(harray(), icolor(), nh, dfwhm, barwidth, xp1, xp2) generate and plot a
histogram of the data in harray(1..np) using the integer array icolor(1..nh) to
designate the color to be assigned to each individual point in harray(). The
maximum number of different values is 32, but numbers less than 12 work best
for clarity. The sampling width is given by dfwhm, and a barwidth of dfwhm/3 is
nominal. The plot is from xp1 to xp2. Set both to zero if you wish the program
to select the range.

plot_line(x1, y1, x2, y2, linewidth, line_color) draw a line from x1, y1 to x2, y2 in the
plot coordinate system with the linewidth and line_color designated. Plot_data()
must be executed first.

Plot_more_data(x1(), y2(), n, line_thickness, line_color) plot data in x1(1:n) and

y1(1:n) on top of the previous axes using a line_width of line_thickness and a
line color of line_color.

Plot_rectangle(x1, y1, x2, y2, linewidth, line_color, [fill_color]) draw a rectangle with

plot coordinates with vertices at x1, y1 and x2, y2. The rectangle’s outer
boundary is drawn with a penwidth of linewidth and color line_color. If the
optional parameter, fill_color, is included at the end, the rectangle is filled with
that color. Otherwise, the rectangle has no fill (transparent).

Plot_set_options(nx_major_ticks, nx_minor_ticks, nx_axis_shift, ny_major_ticks,

ny_minor_ticks, ny_axis_shift) Takes control of plot options and uses integers
to control the number of major ticks (positive major_ticks increase, negative
decreases), the number of minor ticks (positive minor_ticks increases, negative
decreases), and allows shifting the axes (positive axis_shift shifts x up and y to
the right). Be careful manipulating minor ticks as they must fall on top of major
ticks to show the major ticks. Set all values to 0 to return control of the plot
options to Scriptor.

Plot_set_ticks(xsmall, xbig, ysmall, ybig) manually sets the major (xbig, ybig) and

minor (xsmall, ysmall) tick separations. If the values are all integers, and the
subsequent plot ranges are integers, then ticks are assigned using modular
arithmetic. If the values are real, the ticks are separated from x1 and y1 must be
assigned on a major tick mark for aesthetic reasons. If the user wants to return to
automatic tick assignment, execute plot_set_ticks(0, 0, 0, 0) and the plot
statements will auto assign ticks as best they can. Must be executed prior to
calling any plot statements, and if used in conjunction with plot_set_options, it
overrides the tick controls.

271

Plot_string(s0, x_center, y_center, string_color) plots the single line string s0 centered
at x_center, y_center with font color string_color. If multiline, x_center,
y_center designates the upper left hand corner of the left-justified text. The
difference between this command and draw_string is that x_center and y_center
are in the plot_data coordinate system, not the canvas coordinate system. This is
the statement of choice if the goal is to label features inside a data plot.

|MS| Plus(s1 as string, s2 as string) as string arprec statement that adds the string

numbers s1 and s2, which can be real or complex (indicated by a comma
between the real and imaginary components).

Pow(a, b) as double returns a to the power of b (=ab). This function is identical to

using the ^ symbol (a^b).

Pragma(string_directive) Mediates the way in which Scriptor compiles the users

program, or communicates with the user during a run. The following directives
are available:

comments_minimize: turns on the preference Minimize text commentary generated by Scriptor.
comments_allow: turns off the preference Minimize text commentary generated by Scriptor.
arprec_validate: turns on arprec argument validation.
arprec_force_real: as above and forces numbers to be real.
arprec_validate_off: turns off arprec argument validation.
auto_clear_buffer: turns on automatic clearing of the buffer preference.
do_not_auto_clear_buffer: turns off automatic clearing of the buffer preference.
simple_mode: activate simple mode (no external objects).
external_objects: allow program access to external objects.
optimize_speed: turns on compiler optimizations and turns off a variety of run-time checks that

slow up execution. Not recommended during program development
normal_speed: turns off compiler optimizations and turns on the standard run-time checks that

are important for program debugging
stop_via_mouse_click: turns on the menu item Activate debug_stops via mouse click. However,

this prohibits working on other programs during execution
stop_via_stop_button: turns off the menu item Activate debug_stops via mouse click. Now the

user must press the stop button in Main to activate a debug_stop
quickdraw: sets the preference Use QuickDraw instead of Quartz graphics engine (Mac OSX

only, ignored on other platforms).
quartz: uses the Quartz graphics engine on Mac OSX (ignored on other platforms).
Note that only one string_directive can be handled per statement, because after a valid pragma is

found and handled, a return is executed.

272

#Pragma directive [boolean] Alternative and more flexible

BackgroundTasks Enables or disables auto-yield to background threads. In

addition to the pragma directive, specify True or False.
Setting this directive to False is the same as using
DisableBackgroundTasks.

BoundsChecking Enables or disables bounds checking. In addition to the
pragma directive, specify True or False. Specifying False is
the same as using DisableBoundsChecking.

DisableAutoWaitCursor Used to disable the automatic display of the wait cursor (or
watch cursor). The scope of this pragma is local. The wait
cursor will be disabled in the method that calls the pragma
until the method ends. For example, if
DisableAutoWaitCursor is called in a Pushbutton that runs a
loop, the wait cursor will be disabled only until the loop runs
and the Action event has completed.

DisableBackgroundTasks Used to turn off automatic background task handling for
code after the #pragma. It prevents Scriptor from yielding
time back to the operating system, other applications, and
threads. It can speed up very processor-intensive operations
but prevents display of the Watch cursor, may halt normal
background updating of interface elements, and prevents
other threads from executing.

DisableBoundsChecking Used to turn off array bounds checking on array index
values in code after the #pragma. Not recommended unless
the program has been fully debugged. Particularly useful for
speeding up matrix operations.

NilObjectChecking Controls whether to automatically check objects for Nil
before accessing properties and calling methods. In addition
to the pragma directive, specify True or False.

StackOverflowChecking Controls whether to check for stack overflows. In addition
to the pragma directive, specify True or False.

The use of pragmas to speed up program execution should never be used until the
program is fully debugged and tested. Three of these pragmas, BoundsChecking,
NilObjectChecking and StackOverflowChecking when disabled, remove important
safeguards. While Scriptor and MathScriptor operate in an encapsulated environment,
and one need not worry that a program will damage anything permanently, any of these
three events can produce run-time errors that are very hard to diagnose. Also, turning
off background tasks can make the user interface completely unresponsive, and the
program nearly impossible to stop without implementing a force quit.

273

|MS| Prime(n as int64) as int64 returns the nth prime number where n<3, 200, 000,
000.

|MS| PrimeQ(ix as int64, ntrials as integer) as boolean returns true if the number ix

passes the Miller-Rabin test for prime numbers based on a series of ntrials. If
the test returns false, the number is definitely not prime. If it returns true, the
probability of an incorrect positive is 0.25^ntrials.

Print(s0) prints the string s0 to both text output fields. The print operation

automatically adds an end-of-line character at the end. If you want to print
individual characters, use print_with_style.

print_destination as integer sets the destination of print statements (0=both,
1=editfield in Main, 2=editfield in Text)

Print_with_style(s0, fontname, isize, color, Qitalic, Qbold) prints the string s0 using
the font, size, color, and style requested. This option is more flexible than using
set_text_style and print because this statement does not add an end-of-line- thus
you can do each letter in a string using a different style.

Private indicates that the properties or method within the module are only available to

code within the module. Properties and methods of modules default to public if
no designation is provided, so properties and methods must be so labeled if they
are to be private.

274

Bioinformatics of Proteins and DNA

Protein bioinformatics functions are available for the analysis of primary sequences,
evolutionary distances between sequence pairs, and generate pairwise and multiple
alignments. In the following functions the parameters plinear() and paligned() are used
to represent unaligned (no gaps) and aligned sequences, respectively. One can work
with complete sequences or shorter segments as desired. The following example
demonstrates input for two protein segments. One can mix upper and lower case
characters to help mark features. In this case, the capital K is the lysine residue to which
the retinal chromophore is attached.

// 7th transmembrane segments
plinear(1)="pifmtipaffaKtsavynpviyim"
pname(1)="rho: " // bovine rhodopsin pigment
plinear(2)="nietllfmvldvsaKvgfglillrs"
pname(2)="BR: " // bacteriorhodopsin

Each residue is represented by its single letter code, not the more common three letter
codes. In addition, there are four letters used to represent uncertain assignments. The
structures and codes are listed
below:

Alanine Ala (A)
Arginine Arg (R)
Asparagine Asn (N)
Aspartic Acid Asp (D)
Cysteine Cys (C)
Glutamate Glu (E)
Glutamine Gln (Q)
Glycine Gly (G)
Histidine His (H)
Isoleucine Ile (I)
Leucine Leu (L)
Lysine Lys (K)
Methionine Met (M)
Phenylalanine Phe (F)
Proline Pro (P)
Serine Ser (S)
Threonine Thr (T)
Tryptophan Trp (W)
Tyrosine Tyr (Y)
Valine Val (V)

Asparagine or aspartic acid Asx (B)
Glutamine or glutamic acid Glx (Z)
Leucine or Isoleucine Xle (J)
Unknown Xaa (X)

275

A majority of the protein functions require the prior selection of a homology scoring
method. The scoring (or substitution) matrices associated with each method provide a
score for each possible pair of amino acids. This score is positive if the two amino acids
are similar and negative if the two are different. One seeks to align proteins so that the
similar or identical residues are lined up. This approach is appropriate both for
structure-function analysis as well as phylogenetic (evolutionary) analysis. The function
protein_select_homology_method(ioption) is used to select the method from one of
five options: 0=Blosum40, 1=Pam250, 2=Pam250(TM) (TM = transmembrane
proteins), 3=Blosum50, 4=Blosum62. The BlosumL (L=40, 50, 62) matrices are
optimal for aligning proteins where structure and function are of primary interest. If the
two proteins are significantly different and alignments involve multiple gaps, use the
lower L values (e.g. Blosum40). In contrast, the Blosum62 matrix is more appropriate
for aligning ungapped regions of highly similar proteins. The Pam250 matrices are the
standard choice when phylogenetic alignment is important. This matrix is based on long
term extrapolation of evolutionary relationships, and is optimal for directing the
alignment of proteins which have distant but clear evolutionary relationships. The
Pam250(TM) method has been optimized for trans-membrane proteins. In general, if
the proteins you are aligning are very different, use ioption=0 or 1. If very similar, use
ioption=3 or 4. Trial and error is often the best way to choose the scoring matrix.

Virtually all protein alignments require the introduction of gaps. The gaps are created
so as to align smaller subsequences with high similarity, and one has to make a decision
about how to score the gaps. All methods agree that gaps are bad, and hence there is a
gap penalty assigned which is subtracted from the homology score when a gap is first
created. This penalty is automatically assigned when
protein_select_homology_method is executed, but the user can change it by assigning
a new (positive) value to the variable protein_gap_penalty. The larger the number,
the larger the penalty and the fewer the gaps in the alignment. Most investigators
believe that the penalty for extending a gap should be smaller than the penalty for
introducing a gap, and hence the use of affine gaps. The word affine, from the latin
affinis or “connected with”, is used to indicate that if two or more gaps are connected to
each other, the scoring should be different. The method used here is that the gap penalty
is calculated by the formula:

 Penalty(Ngaps) = protein_gap_penalty + protein_gap_extend_penalty*(Ngaps – 1)

Typical assignments for these variables are protein_gap_penalty = 6 and
protein_gap_extend_penalty = 1, which means that there is a 6-fold greater penalty for
opening a new gap as there is to extend the gap by one. There is strong evolutionary
evidence to suggest that affine gaps are more realistic, but there is little evidence to

276

suggest what values should be assigned to the above two variables.

The following demonstrates the code used to generate the alignment of the 7th
transmembrane segments of rhodopsin and bacteriorhodopsin. These two proteins have
little if any evolutionary connection, nor do they share common functionality. However,
both of these alpha helical segments bind retinal to the lysine residue marked with a
capital K.

mthd=protein_select_homology_method(1)
protein_gap_penalty=4
k=protein_align(plinear(), paligned(), 0)
print(" linear gap "+mthd+" alignment score = "+str(k))
protein_print(paligned(), pname(), 2, 1, "Courier", 18)
print("---")

protein_gap_extend_penalty=1
k=protein_align(plinear(), paligned(), 1)
print(" affine gap "+mthd+" alignment score = "+str(k))
protein_print(paligned(), pname(), 2, 1, "Courier", 18)

Following is the output generated by the above code:

linear gap pam250 alignment score = 8
 10 20
 {1-28} | |
 rho: pifmtipaffa-Ktsa-v-ynpviyim-
 BR: ni-etl-lfmvldvsaKvgfg-lillrs

affine gap pam250 alignment score = 16
 10 20 30
 {1-31} | | |
 rho: pi----fmt--ipaffaKtsavynpviyim-
 BR: nietllfmvldvsa---Kvg--fg-lillrs

The second alignment based on affine gap scoring is significantly better because the
lysine residues to which the retinal chromophore are covalently bound are aligned.
However, one should not assume that a higher score means a better alignment because
affine gap-based alignment scores are almost always higher because of the increased
degrees of freedom inherent in cheap extra gaps. Affine gaps are even more important
when doing multiple alignments. The following is an example of the code and output
for a short segment multiple alignment for six retinal proteins (two visual pigments, two
archaeal pigments and two bacterial pigments).

277

protein_gap_penalty=4
protein_gap_extend_penalty=1
prof=protein_align_multiprofile(plinear(), paligned(), 6, 1)
k=protein_homology_score(paligned(), 6, 1)
print(" affine gap "+mthd+" alignment score = "+str(k))
paligned(7)=protein_gen_consensus(paligned(), 6)
pname(7)="consensus: "
protein_print(paligned(), pname(), 7, 1, "Courier", 18)

affine gap pam250 alignment score = 589
 10 20 30
 {1-31} | | |
 rho: p-------ifmtipaffaKtsavynpviyim
 canary: pltaa-------lpaffaKsatiynpiiyvf
 BR: niet---llfmvl-dvsaKvg--fglillrs
 SR2: ptvdvalivy--l-dlvtKvg--fgfialda
 GPR: alnln--liyn-ladfvnKi--lfgliiw-n
 BPR: nln----liyn-ladfvnKi--lfgliiw-n
 consensus: ++ + + +K ++ +

The following 16 variables and functions are available in version 1.8.4. Additional
bioinformatics functions are being added for version 1.8.5.

protein_align(plinear(), paligned(), ioption) as double returns the homology score

between the two proteins after sequence alignment based on the scoring method
selected using protein_select_homology_method. The original sequences
without spaces are in plinear(1) & plinear(2) and the aligned proteins are
returned in paligned(1) & paligned(2). Residues using single letter codes can be
upper or lower case. The variable ioption determines how the gaps are handled.
If ioption=0, a linear gap penalty is assigned based on protein_gap_penalty. If
ioption=1, an affine gap penalty is assigned based on the formula:
penalty(ngaps) = -protein_gap_penalty - (ngaps -
1)*protein_gap_extend_penalty.

protein_align_2to1(paligned()) as double aligns paligned(2) to paligned(1) without
altering paligned(1). Returns a positive number if the alignment was improved
in the process. Must verify that result is an improvement by checking if the score
improved.

protein_align_by_feature(plinear(), paligned(), nproteins, ioption) as boolean aligns
two or more proteins making sure that a designated residue in each protein
(indicated by using a capital letter) is aligned. All other residues must be
lowercase. Ioption assigns the gap penalty (0=linear gap penalty, 1=affine gap
penalty)

278

protein_align_multiple(plinear(), paligned(), nproteins, ioption) carries out a multiple
protein alignment of nproteins with primary sequences in plinear(1..nproteins).
The aligned proteins are returned in paligned(1..nproteins). Gap method is
selected by ioption (0=linear gap penalty, 1=affine gap penalty)

protein_align_multiprofile(plinear(), paligned(), nproteins, ioption) as string returns

the profile used and creates the alignments for the linear sequences provided in
plinear(). Alignments returned in paligned() for the selected option (0=linear gap
penalty, 1=affine gap penalty) .

protein_best_score(plinear(), ioption) as double returns a reasonable estimate of the

best homology score between two protein sequences that are not aligned. This
routine scores but does not align. Ioption determines how gaps are handled:
0=normal, 1=affine. Call protein_select_homology_method(ioption) first, and
assign protein_gap_penalty and protein_gap_extend_penalty (if selecting
ioption=1).

protein_clean_alignments(paligned(), nproteins) cleans a set of aligned proteins by

removing gaps that fill an entire column. This function is intended for those
writing their own multiple protein alignment routines.

protein_distance(plinear(), ioption) as double returns the evolutionary distance

between two proteins. Three methods are available and selected by ioption=0, 1
or >7. Ioption=0 selects Jukes-Cantor model (d = -(3/4)*log(1 - 4*f/3) where f =
fraction of sites with different nucleotides. Ioption=1 selects Kimura model (d =
-0.5*log(1-2P-Q)-0.25*log(1-2Q), where Q = fraction of transversions and P =
fraction of transitions. Transversion refers to the substitution of a purine for a
pyrimidine or vice versa and is more chemically significant and evolutionarily
uncommon, than transitions. Ioption>7 selects Feng and Doolittle [d = -
log(Seff) = -log[(Sobs - Srandave)/(Smax - Srandave)] where Sobs = the
observed homology score for the two proteins, Smax = average of the scores
with both proteins against themselves, Srandave = average score for multiple
random proteins of same lengths as those under analysis. The accuracy is
proportional to the number of random proteins, and this number is determined by
Ioption. It is recommended that Ioption=16 to 32 but values as large as 1024 are
possible. Designed for pam250, but will work with any homology method.
Time for Feng and Doolittle method is proportional to Ioption^2. .

279

protein_draw_phylogenetic_tree(plin(), np, pnames() , px(), py(), pclr(), ioption) as
string returns a string summary and draws an approximate phylogenetic tree
based on a global Kimura distance optimization. The protein primary sequences
are in plin(1..np), where np is the number of proteins. Short names of the
proteins are in pnames(1..np), and if one is a profile, the profile should be called
"prof" or "profile". After the relative positions of the proteins are determined,
the positions are marked with a solid dot, and the names are printed at lower
right. The positions of the names can be moved by setting the offsets into
px(1..np) and py(1..np) where it is noted that 0, 0 is at upper left, so to move the
y position down, a positive py(i) is required. The pclr(1..np) array sets the color
that is used to mark the protein and name the protein. ioption ranges from 00 to
29 where the left most (tens) digit sets the separation error: 0[sqrt(delta)],
1[linear in delta], and 2[delta^2]. Use trial and error to select. The right most
digit (ones) sets the minimum Kimura distance to be twice that value divided by
100. Thus, ioption=12 uses a positional error function that is linear in Kimura
distance with a closest contact target of 0.04.

protein_gap_extend_penalty as double a positive value that represents the penalty
associated with a gap extension by one unit. This value is initialized by
protein_select_homology_method, but can be reassigned in the user program to
observe the effect. This variable is only relevant to affine gap scoring where the
gap penalty is calculated as:

 penalty(ngaps) = -protein_gap_penalty - (ngaps - 1)*protein_gap_extend_penalty.

protein_gap_penalty as double a positive value that represents the penalty associated

with the creation of a gap in an alignment. Although automatically assigned by
the selection of a scoring matrix, it is often necessary to manipulate this value to
optimize alignments.

protein_gen_consensus(paligned(), nproteins) as string returns the consensus analysis

for two or more proteins. If all the residues in a column are identical, the
consensus shows that residue. If all residues are the same and there is a single
gap, a consensus is indicated nonetheless. If all the residues are similar, a + is
shown. Otherwise the column is blank.

protein_gen_profile(paligned(), [nproteins]) as string returns a profile that provides a

best fit to the aligned protein sequences in paligned(1...2) [or if nproteins is
present, paligned(1..nproteins)] based on the previously assigned
protein_select_homology_method(imethod).

280

protein_homology_score(paligned(), [nproteins], ioption) as double returns the
homology score between two aligned proteins [or nproteins proteins] where gaps
are indicated by - or ~. Residues can be upper or lower case, it matters not.
ioption determines how gaps are handled: 0=normal, 1=affine, 2=normal+ignore
end gaps, 3=affine+ignore end gaps

protein_print(paligned(), pnames(), nproteins, ioption, fontname, ifontsize) prints

aligned protein sequences directly to the Main and Text editfields where
paligned(1..nproteins) are the protein sequences. Short names for each protein
are assigned to pnames(1..nproteins). Ioption=0 (no color) or 1 (color) simply
prints the proteins. Ioptions=2 (no color) or 3 (color) prints two proteins with
homology analysis in between.

protein_random(ilength, ioption) as string returns a random protein in which each

amino acid residue has an equal but random probability of being present. If
ioption=1 then probability of each residue is weighted by observed frequency.

protein_residue_codon_shift(s1, s2, np, nq) as integer returns the number of

nucleotide changes associated with changing residue s1 to residue s2 (or vice
versa). The number of transitions is returned in np, the number of transversions
is returned in nq. The standard genetic code is used and codons are selected to
minimize the number of bases switched.

protein_residue_composition(plin) as string returns an analysis of the protein
composition in a list array in the order GAIVLFWPMCYSTNQDEKRHBZJX.
The sequence of numbers gives the population for each of the 20 amino acids
followed by the three indeterminate pairs (B, asparagine or aspartate; Z,
glutamine or glutamate; J, Leucine or isoleucine) and X (unknown). If there are
gaps, the gaps are randomly distributed as well, but the gaps generate an error
statement because the number of slots is different.

protein_residue_pair_score(s1, s2) as double returns the homology score for the pair

of residues in strings s1 and s2. Execute
protein_select_homology_method(imethod) first.

protein_select_homology_method(ioption) as string selects the homology matrix

based on the value of ioption:0=Blosum40, 1=Pam250, 2=Pam250(TM) (TM =
transmembrane proteins), 3=Blosum50, 4=Blosum62. This function returns the
name of the method for confirmation. This method must be called prior to doing
any protein sequence analyses.

281

protein_shuffle(plin) as string returns a protein sequence of the same length and
residue composition but with the residues randomized in terms of location. This
only works for single letter code amino acids.

Private indicates that the property or method is only available to code within the same

object.

Public indicates that the properties or method within the module are available to code

outside of the module. Properties and methods of modules default to public if no
designation is provided. Hence, you do not need to use this keyword to identify
variables or functions that are global. However, if variables declared at the top
of a class are involved, such public variables can only be accessed via using the
dot extension from the instantiated class variable.

Q_afaos_excited_singlet_state as boolean Set this Boolean to true to calculate the

properties of the lowest-excited singlet state using AFAOS (Averaged Field
Approximate Open Shell) theory. This Boolean needs to be assigned prior to
calling a CNDO or INDO calculation.

Q_damp_scf as boolean Set this boolean to true to average the Fock matrix from the

previous iteration with the current Fock matrix. This helps to prevent oscillation
of the electron density, and for certain molecules, improves convergence.
Normally the user does not need to bother with this variable because the program
will automatically turn this Boolean to true if oscillations are observed.
However, there are molecules for which no convergence occurs in the absence of
damping from the very first SCF iteration.

Q_double_buffer_graphics Set this boolean to true to double buffer all graphics. This
can cause havoc on Windows computers and often fails in non-cocoa Mac
systems. This option can also be set in preferences.

Q_force_unit_eigenvectors Set this boolean to true to seek unit eigenvectors so that
each vector points to one and only one atomic orbital. This often works for
atoms, and rarely works for molecules. It is included as a teaching tool, not a
research option.

|MS| Q_greater_than(s1, s2) as Boolean returns true if s1>s2, where s1 and s2 are

arbitrary precision string floats or integers.

|MS| Q_less_than(s1, s2) as Boolean returns true if s1<s2, where s1 and s2 are

arbitrary precision string floats or integers.

282

Q_histogram_use_external_colors set this boolean to true if external colors are to be
read in to color the histogram regions. See plot_histogram for more information.

Q_monitor_keyboard as Boolean When set to true all key presses are monitored and

are available by calling keyboard_monitor_activity().

Q_mouse_data_available set to true by system when mouse data are available.

Q_phidget_raw set to true to collect voltage data from phidget cards using the raw
voltage (0-4095) rather than the scaled (0-5) voltage.

Q_plot_angular_mode set to true by user to indicate that the x axis is in degrees. The
plot routine will select ticks to conform with degrees.

Q_plot_fill set to true by user to indicate that the plot should be filled to zero, or to the

value, Yfill_reference_value, if that variable is set in the program prior to the
plot.

Q_plot_log_X set to true to use a log scale for the x axis.

Q_plot_log_Y set to true to use a log scale for the y axis.

Q_plot_zero_line as boolean set this variable to true if the Y=0 line is to be indicated
on the subsequent plot. This variable is linked to plot_data, and should be
assigned prior to calling this method.

Q_plot_reverse_x_axis as boolean If set to true, the x-axis is reversed with x2 on left
and x1 on right. This variable is linked to plot_data, and should be assigned
prior to calling this method.

Q_show_mouse_rectangle when set to true, a red rectangle shows the mouse drag
region in the canvas of the graphics panel.

Q_use_external_parameters when set to true read the CNDO parameterization from
the spreadsheet. To load the standard parameters into the spreadsheet, execute
atom_property_cndo(0, ""S"", 0, S1) and then modify by hand. One can then
store the modified parameters as a data set for future use. The program only
reads the parameters in the first 7 columns (see discussion under
molecule_run_CNDO). These new parameters will also be used in the INDO
calculations, although it is not possible to change the one-center correction
intergrals as any attempt to do so might damage invariance.

ran2 as double returns a random number between 0 and 1 (exclusive of end values)
based on the shuffle methods of L'Ecuyer and Bays-Durham. This generator has
excellent statistics and a very long period (>2E18).

283

ran2_seed assigns as integer reseeds the ran2 random number generator of L'Ecuyer
and Bays-Durham. Use a large integer.

random_gaussian as double returns a random number generated from a Gaussian

distribution with a mean of zero and a standard deviation of 1.0 There are three
independent methods of generating random numbers. Both rnd and
random_number generate random numbers between 0.0 and 1.0, but
random_number can have a seed value assigned using random_seed so that the
random numbers can be repeated as identical sets in subsequent runs. This is
important for some Monte Carlo calculations. Arpec_random is the third
method, and it can also be provided with a seed value.

random_integer(ilow, ihigh) as integer returns a random integer from ilow to ihigh

inclusive. There are three independent methods of generating random numbers.
Both rnd and random_number generate random numbers between 0.0 and 1.0,
but random_number can have a seed value assigned using random_seed so that
the random numbers can be repeated as identical sets in subsequent runs. This is
important for some Monte Carlo calculations. Arpec_random is the third
method, and it can also be provided with a seed value.

random_integer_sequence(nseq(), nlow, nhigh) generate a random integer sequence
from nlow to nhigh so that each value appears once but only once. The result is
returned in nseq(0..ns) which is redimensioned to exactly the right size. Note
that the list starts at nseq(0) and will stop at nseq(nhigh-nlow).

random_number as double returns a random number between 0.0 and 1.0. There are

three independent methods of generating random numbers. Both rnd and
random_number generate random numbers between 0.0 and 1.0, but
random_number can have a seed value assigned using random_seed so that the
random numbers can be repeated as identical sets in subsequent runs. This is
important for some Monte Carlo calculations. Arpec_random is the third
method, and it can also be provided with a seed value.

random_seed assigns as double or as double sets or returns the current seed of the

random generator. If setting the seed, real numbers between 10^7 and 10^8 are
recommended.

read_binary_file(filepath, [filecontents] or [a1(), n1] or [a2(), n1, n2]) as integer read
the string or doubles in the binary file designated by filepath. The filepath
represents a path within the same folder as Scriptor. For example,
filepath="data_sets:bf12" read the data in the file "bf12" inside the folder
"data_sets". This routine can read a string, or a double in the form of a one-
dimensional array a1(0..n1) or a two-dimensional array a2(0..n1, 0..n2). Returns
the file length in bytes (0=failure).

284

real(s1) as string returns the real part of an arbitrary precision complex string number.

Redim redimensions a previously declared array to the specified size. One cannot use

this statement to change the type or create a new variable. To redim the array
x(2) to size n, use Redim x(n).

Redim_multiple(n, a(), b(), [c(), [d(), [e()]]]) redimension between 2 and 5 double
arrays where c(), d() and e() are optional. All are dimensioned to size (n).

Rem everything that follows is a comment. When Scriptor is used for teaching, the
REM statement is reserved for use by the instructor to add comments to a
student’s program. The Rem statements can be removed by the student using the
Debug menu, but hopefully after reading them.

Replace(source, substring, replacement) as string replace the first occurrence of the
substring with replacement in the source.

ReplaceB(source, substring, replacement) as string as above for a byte character string

but now the replacement is case sensitive.

ReplaceAll(source, substring, replacement) as string replace all occurrences of the

substring with replacement in the source.

ReplaceAllB(source, substring, replacement) as string as above for a byte character

string but now the replacement is case sensitive.

Return when encountered in a function, returns the value that follows and exits. When

encountered in a subroutine, causes an immediate exit from the subroutine.

RGB(ired, igreen, iblue) as color set the color using the RGB method (params 0…255).

Right(s0, n) as string returns the n characters from the right of s0.
RightB(s0, n) as string returns the n bytes from the right of s0.

rnd as double random double from 0.0 to 1.0. This function is an internal function

that is provided by the compiler, and is very fast, but not as competent as the
other random number generators provided by MathScriptor.

Round(x) as double returns the rounded integer equivalent of x (1.49→1, 1.51→2)

Round_to_precision(x, ndigits) as double rounds the number x to the number of

significant digits specified by ndigits.

285

Round_to_precision(s1, nsd) as string rounds the arprec string number s1 to the

number of significant digits specified by ndigits, with the result returned in an
arprec string.

RTrim(s0) as string returns the string s0 with trailing blank spaces removed
save_binary_file(filepath, [filecontents] or [a1(), n1] or [a2(), n1, n2]) as Boolean is no

longer supported. Use binary_file_write, which does the identical task with
greater flexibility.

save_spreadsheet(file_name) as boolean save the current spreadsheet using the file
name file_name in the data_sets folder. You can create a folder inside data_sets
and place the spreadsheet inside that folder by specifying folder_name\file_name
(or on a Mac, folder_name:file_name). If using a folder, it must be created first.
This statement cannot create a new folder. Returns true is successful, otherwise
false.

Save_user_text_file(filename, filecontents, Qreplace) as Boolean store the string in
filecontents into a file called filename inside the user_files folder, and replace if
Qreplace is true. Returns true if process worked.

Select Case the first line of a select case construct. The last line is end select.

Set_graphics_slider(ipercent_graphics) programmatically controls the slider on the

Main panel such that ipercent_graphics controls the percentage of space
allocated to the graphics window versus the output text field.

Set_text_style(fontname, ifontsize, fontcolor, Qitalic, Qbold) sets text output style for
the output canvasses in both Main and Text panels. Further print statements will
use this style until a new one is chosen either programmatically or from the
font/size menus. This statement is the only way to generate different colors,
bold or italic font output. If the font you request is not present, no error is
generated, and nothing happens.

Set_to_data shifts visibility, mouse manipulation and keyboard input to the data
(spreadsheet) panel.

Set_to_graphics shifts visibility, mouse manipulation and keyboard input to the
graphics panel and updates active_canvas so that it equals 2.

set_window_size(byref nx, byref ny) The integers nx and ny are used to set the desired
scriptor window width (nx) and window height (ny). The method prevents a size
less than 800x600 nor larger than 95% of the computer screen. The method also
returns the final size in the byref parameters. Setting the parameters to 0, 0
leaves the window unchanged and returns the current size in nx and ny.

286

SF1(real_number) converts a single or double precision variable to a string for printing.
Unlike the str() function, which returns 6-7 significant digits, or
convert_to_string() which returns all significant digits, this function returns
roughly 12-13 digits with the digits separated into groups of three following the
conventions recommended by the American Physical Society. Examples are
presented below:

0.001 161 409 727 843
6.022 141 790 000 000 e+23
8987 551 787.399 9996

 Note that if a single digit would be printed alone, it is joined with the preceding
or subsequent triplet. The goal of this function is to present numbers in a
scientific format that is easiest to read. The short name is to facilitate the use of
the function inside a print statement.

SF2(arprec_string, ndigits) as string returns an arprec string in the form

1.23456...[nhidden]...123456 where ndigits assigns the number of digits shown
at the extremes (example shows ndigits=6) and the variable nhidden displays the
number of digits hidden from view.

Show_progress_bar(ipercent_progress) displays progress on the Main Panel or Music

Panel progress bars using ipercent_progress (0..100) as the variable.

Show_progress_line(s0, [fontname, fontsize]) Displays the string s0 in the input line

using the default fontname and fontsize, but the user can override the defaults by
explicitly specifying both the fontname and fontsize.

Sin(x) as double returns the sine of x assuming x is in radians. If you want to input x

in degrees, use sin(x*const_degree).

Sinh(x) as double returns the hyperbolic sine of x.

Spreadsheet_add_column(header, colwidth, ioption) add column at far right with

width colwidth (0 uses the width from the column at left) and ioption sets
alignment (0=default, 1=left, 2=center, 3=right, 322=same as column at left).
Max=64.

Spreadsheet_add_row adds a new row at bottom of spreadsheet. The number of rows

in a spreadsheet is limited only by the size of the computer memory.

Spreadsheet_cell(irow, icol) as string, or assigns as string read or assign the string

data in spreadsheet cell irow, icol.

287

Spreadsheet_column_width(icol) assigns as integer sets the column width of column
icol in pixels.

Spreadsheet_create(nrows, ncols, colheads(), colwidths() , ialign) create a new

spreadsheet containing the number of rows (nrows), columns (ncols<=64),
column headers (colheads(1..ncols)), column widths (colwidths(1..ncols)) and
alignment based on ialign (0=default, 1=left, 2=center, 3=right)

Spreadsheet_delete_column(idel) delete column idel and shift any columns to the

right of idel to the left.

Spreadsheet_delete_row(idel) delete row idel and shift any higher numbered rows up.

Remember that the top row is number 1, not number 0, and that the headers are
separate entities and cannot be deleted. The headers can be changed by using the
Spreadsheet_header() function (see below).

Spreadsheet_eomccsd_open(filename) as boolean open the filename in user_files as
an gaussian eomccsd output (.log) file and place results in the spreadsheet.
Return true if the filename was valid. If filename="unknown" then open a user
dialogue.

Spreadsheet_filename as string [or assigns as string] sets or reads the filename of the
current spreadsheet. This string is located in the lowest right editfield in the data
sets panel. This variable is useful for checking if a spreadsheet has been loaded
into memory, although it is not foolproof in that this function can set the name of
any spreadsheet to a given name.

Spreadsheet_flip_columns(irow, jrow) flip the two columns in the spreadsheet by

moving all elements in both columns to the corresponding locations in the
second column. No elements are lost in the process.

Spreadsheet_flip_rows(irow, jrow) flip the two rows in the spreadsheet in terms by

moving all column elements to the corresponding locations in the second row.
No elements are lost in the process.

Spreadsheet_gaussian_cis_open(fname) as Boolean open the gaussian CIS excited
state output file, fname, inside of user_files and extract the excited state
symmetries, transition energies and oscillator strengths and fill a new
spreadsheet with the information. The method returns true if successful.

288

Spreadsheet_gaussian_cis_transitions_open(fname) as boolean opens the gaussian
output file designated by the string fname inside the user_files folder and
transfers the information to the spreadsheet. This method is designed to collect
the CIS interstate transition energies generated by using the keyword
AllTransitionDensities. As many as 64 states can be collected.

Spreadsheet_gaussian_open(filename) as Boolean open the filename in user_files as a
gaussian output (.out, .log) file and place results in the spreadsheet. Return true
if the filename was valid. Only the optimized coordinates and the Mulliken
charges are collected. Although this command will also work on a SAC-CI
calculation output, if the excited state information is desired, use
Spreadsheet_sacci_open() instead.

Spreadsheet_gaussian_orbitals_open(fname) as Boolean open the gaussian output
file, fname, inside of user_files and extract the orbital energies, symmetries and
occupation and fill a new spreadsheet with the information. Col 1 is the
molecular orbital number, Col 2 is the energy in Hartrees, Col 3 is the symmetry
and Col 4 is the occupation (only reliable if a ground state calculation was done,
revise as necessary for excited states).

spreadsheet_gaussian_TDDFT_open(fname) as Boolean open a gaussian TDDFT
excited state output file, fname, inside of user_files and extract the excited state
symmetries, transition energies and oscillator strengths and fill a new
spreadsheet with the information. The method returns true if successful.

Spreadsheet_header(icol) as string, or assigns as string read or assign the header for
column icol.

Spreadsheet_insert_column(column_at_right, header, icolwidth, ialign) insert a

column to the left of the column_at_right with header, width (colwidth) and
alignment.

Spreadsheet_lock Executing this command prevents a user from sorting the

spreadsheet by clicking on column headers or changing individual cells by direct
editing. This is a safety feature, but the programmer should understand that the
user can override this command. Sorting can be allowed by selecting the menu
item “make all columns header click sortable”. Direct editing of the cells can be
activated by selecting the menu item “allow direct editing of cells”. Thus, the
Spreadsheet_lock command only serves to prevent accidental manipulation. A
determined user can still modify the spreadsheet.

Spreadsheet_maxcolumn as integer returns the current number of columns. Note that
the number of columns that are visible in the spreadsheet will often be larger
than the number of columns that are under programmatic control. Use this
variable to find out how many columns are available for manipulation.

289

Spreadsheet_maxrow as integer returns the current number of rows. Note that the

number of rows that are visible in the spreadsheet will often be larger than the
number of rows that are under programmatic control. Use this variable to find
out how many rows are available for data manipulation.

Spreadsheet_mndoci_open(filename) as Boolean open the filename in user_files as an

mndoci output (.cio) file and place results in the spreadsheet. Return true if the
filename was valid. This command also works on mndoci arc (.cia) files, but
produces a smaller spreadsheet with fewer entries.

Spreadsheet_pdb_open(sfilename) as boolean open the filename in user_files as a
protein data bank (pdb) file (.pdb) and place results in the spreadsheet. Return
true if the filename was valid. If filename="unknown" then open a user
dialogue.

Spreadsheet_redcolumn set to the column of the cell contents you want marked in red.

Spreadsheet_redrow set to the row of the cell contents you want marked in red.

Spreadsheet_row_height assigns as integer assign the pixel height of the rows.

Spreadsheet_sacci_open(filename) as Boolean open the filename in user_files as a

sacci output (log) file and place results in the spreadsheet. Return true if the
filename was valid.

Spreadsheet_set_row_colors(carray(), ncolors) assign the header and row colors of the
spreadsheet where ncolors is the number of assigned colors and
carray(0..ncolors) is the array of colors, where the zeroth element sets the header
background color. To assign default colors, pass a valid array but filled with
black. To return to pure white, call this method with ncolors=0.

spreadsheet_spike_open(filename [, t1, t2]) as boolean opens up a spike (neural
signal analysis) file and places the contents into the spreadsheet. Returns true if
successful. If t1 and t2 are included, only data with times in range
t1<=time<=t2 are added to the spreadsheet.

Spreadsheet_to_buffer(rowmin, colmin, rowmax, colmax, linewidth, row_separation,
col_separation, column_align, fontname, fontsize) draws the spreadsheet into
the buffer from cell(rowmin, colmin) through cell(rowmax, colmax).
Row_separation and Col_separation add whitespace between the rows and
columns, respectively, and are essential for preparing tables that are readable.
Column_align sets the alignment of the cell contents (1=left, 2=centered,

290

3=right). The cell contents and headers are drawn using the fontname and
fontsize specified.

Spreadsheet_update_header(icol as integer) assigns as string replace the header of

column icol with the assigned string.

sqrt(x) as double return the square root of x

Static declares and dimensions variables which are retained in memory after the method

goes out of scope. Use in place of dim. Variables declared inside of methods
remain private to the method when the method is reentered. Note that static
variables only remain in memory during the Run session, and when the program
stops, the values are lost. If the goal is to retain variables between runs, use
common_blocks, disk files or the spreadsheet.

Step optional step size assignment in for..next loop as in for i=2 to 10 step 2.

(Formally, step should always be positive. Backward looping is indicated by
using downto with a positive step as in for i=10 downto 2 step 2. However,
versions of Scriptor beyond 1.8.2 now accept negative step sizes in for-to loops
[e.g. for i=10 to 2 step –2.])

Str(x) as string converts the integer or real variable x into a string for printing. If

converting other objects to strings, or to convert a number while retaining full
accuracy, use convert_to_string(any_varible).

StrComp(s1, s2, imode) as Integer compares two strings, s1 and s2, and returns –1 if

s1<s2, 0 if s1=s2 and +1 if s1>s2. The comparison mode is binary (case-
sensitive) if imode=0 and text (lexicographic) if imode=1.

String_block_convert(string_data, string_in_hex, string_in_binary, integer_array(),

double_array()) Converts a plain string or a set of bytes in hexadecimal format
into the other three representations based on each variables representation in
memory. This function is useful for using or writing cypher codes. All five
parameters are byref but the user must select one of the strings as the
independent variable. The other variables will return the appropriate value based
on how that variable is represented in memory. Arrays are redimmed to a size
appropriate to hold the data and the number of elements can be obtained using
ubound.

String_countfields_quoted(s0, sepstr) as integer countfields in string based on sepstr

being the field separator. Ignores separators within quoted fields.

291

String_countfields_regex(s0, pattern) as integer count the number of occurrences of a

RegEx pattern within a string.

String_decipher_blowfish(string_to_decipher, key_string) as string decipher the

string_to_decipher using the key_string and the blowfish algorithm. The
string_to_encipher will have spaces added at the end to pad the entire string so
that it has a length that is a multiple of 8 bytes. These spaces will be present in
the deciphered version. This fact must be kept in mind when comparing the
original with the deciphered version.

String_decode_base64(string_to_decode) as string encodes an arbitrary string into a

64-character alphabet composed only of printable ascii characters. Four bytes of
input are converted to three bytes of output. Spaces and linebreaks are ignored.

String_decode_case(s0) as string undoes the encoding of case done by

string_encode_case, resulting in the original string.

String_editdistance(s1, s2) as integer return the Levenshtein distance, aka the edit

distance, between the two strings. This number equals the smallest number of
insertions, deletions or changes necessary to convert one string into the other.

String_encipher_blowfish(string_to_encipher, key_string) as string encipher the

string_to_encipher using the key_string and the blowfish algorithm. The
string_to_encipher will have spaces added at the end to pad the entire string so
that it has a length that is a multiple of 8 bytes. These spaces will be present in
the deciphered version. This fact must be kept in mind when comparing the
original with the deciphered version.

String_encode_base64(string_to_encode, line_wrap_length) as string ncodes an

arbitrary string into a 64-character alphabet composed only of printable ascii
characters. Three bytes of input are thus converted to four bytes of output. The
line_wrap_length controls the maximum number of characters per line and
should be set to 76 to conform with MIME Encoding. 0 requests no linebreaks.

String_encode_case(s0) as string encodes the uppercase/lowercase state of each letter

using ^ as the marker.

String_hexbyte(s0) as string converts each byte of the string into the corresponding

pair of hexadecimal digits separated by spaces.

292

String_instr_quoted(kstart, source, sfind) as integer identical to InStr function, except
that it ignores any occurrence of "find" within double quotes. The starting
position, kstart, is required.

String_instr_reverse(kstart, source, sfind) as integer similar to InStr, but searches

backwards from kstart (or if kstart = -1, then from the end of the string). If find
can't be found, returns 0.

String_join_quoted(sarray(), sdelim) as string join the given strings with a delimiter

sdelim, just like RB's intrinsic Join method, except that if any of the fields
contains the delimiter, that item will be surrounded by quotes in the output. See
string_split_quoted for the inverse function.

String_line_ending(s0) as string returns the end of line character used in the string s0.

If none is found, const_eol is returned.

String_metaphone(s0, sprimary, salternate) compute the Double Metaphone of the

source string, an algorithm that finds one or two approximate phonetic
representations of a string, useful in searching for almost-matches.

String_nthfield_quoted(source, sdelim, i) as string equivalent to nthField() function,

but respects quoted values.
String_pixel_height(s0, fontname, fontsize, Qbold, Qitalic) as integer returns the

number of graphics pixels of height the text in s0 takes when drawn using
draw_string(). The value includes whitespace above and below the characters.
Keep this string short to avoid wrapping.

String_pixel_width(s0, fontname, fontsize, Qbold, Qitalic) as integer returns the
number of graphics pixels of width the text in s0 takes when drawn using
draw_string().

String_random(i, [schars]) as string return a string of random ascii characters made up
of A-Z, 0-9, or if the optional parameter schars is included, then the characters
will be selected randomly from the list.

String_random_quotation as string returns a random quotation with attribution each
time it is called. There are roughly 270 quotations, from serious to humorous,
stored in condensed form in the text file qbf.txt inside the help folder. If this file
is missing, the string_random_quotation function will return random_quote
failure: Could not find help_files\qbf.txt?

293

String_RegEx_options(option_name, option_integer) sets the following options for
regular expression (regex) routines:
 "case", 1 = search is case sensitive (0=case insensitive, default)
 "doteol", 1 = the period matches every character include eol character(s) (0=dot

ignores eol character, default)
 "greedy", 1 = search finds everything from first to last delimiter (default)

(0=localize search)
 "eoltype", sets end of line type: 0=any, 1=const_eol, 2=mac, 3=win32, 4=unix

(0=any=default)
 "replaceall", 1 = replace all occurrences of match (0=only the first, default)
 "ignoreEOLs", 1 = treat entire text as a single line (ignore line endings)

(0=default)

294

String_RegEx_replace(source_string, search_pattern, replace_pattern, kstart, kmatch)
as string Uses regular expressions (Perl) to search for the match_pattern which,
when found, is replaced by a string defined by the replace_pattern

pattern codes (to be used only in replacement string):
 $` Replaced with the entire target string before match
 $& The entire matched area (this is identical to \0 and $0)
 $' Replaced with entire target string following the matched text
 \xnn Replaced with the character represented by nn in Hex
 \nnn Replaced with the character represented by nn in Octal
 \cX Replaced with the character that is the control version of X
wildcards:
 . Any single character except const_eol (end of line character(s))
 ^ beginning of a line unless used in a character class (below)
 $ end of a line unless used in a character class (below)
character classes:
 [aeiou] Any one of the characters a, e, i, o, u
 [^aeiou] Any character except a, e, i, o, u
 [a-e] Any character in the range a-e, inclusive
 [a-zA-Z0-9] Any alphanumeric character
 [[] Finds a [
 []] Finds a]
 [a-e^] Finds a character in the range a-e or the caret character
 [a-c-] Finds a character in the range a-c or the - sign
Special Character Matches:
 \r Line break (return)
 \n Newline (line feed)
 \t Tab
 \f Formfeed (page break)
 \xNN Hex code NN
 \s Any whitespace character (space, tab, return, linefeed, form feed)
 \S Any non-whitespace character
 \w Any “word” character (a-z, A-Z, 0-9, and _)
 \W Any “non-word” character (All characters not included by \w)
 \d Any digit [0-9]
 \D Any non-digit character
Repetition Character Matches
 * Zero or more characters
 .* finds an entire line of text, up to but not including const_eol
 + One or more consecutive characters
 [0-9]+ finds a string of one or more consecutive numbers, such as “16238”
 ? Zero or one characters

295

String_RegEx_search(source_string, search_pattern, kstart, kmatch) as string search
for the pattern in the source string using regular expressions (sometimes called
Perl). The following wildcards and codes are used in the search_pattern:

 . Matches any character except newline
 [a-z0-9] Matches any single character of set
 [^a-z0-9] Matches any single character not in set
 \d Matches a digit. Same as [0-9]
 \D Matches a non-digit. Same as [^0-9]
 \w Matches an alphanumeric (word) character — [a-zA-Z0-9_]
 \W Matches a non-word character [^a-zA-Z0-9_]
 \s Matches a whitespace character (space, tab, newline, etc.)
 \S Matches a non-whitespace character
 \n Matches a newline (line feed)
 \r Matches a return
 \t Matches a tab
 \f Matches a formfeed
 \b Matches a backspace
 \0 Matches a null character
 \000 Also matches a null character because of the following:
 \nnn Matches an ASCII character of that octal value
 \xnn Matches an ASCII character of that hexadecimal value
 \cX Matches an ASCII control character
 \metachar Matches the meta-character (e.g., \, ., |)
 (abc) Used to create subexpressions.\1, \2, … Matches whatever first

(second, and so on) of parens matched
 x? Matches 0 or 1 x’s, where x is any of above
 x* Matches 0 or more x’s
 x+ Matches 1 or more x’s
 x{m, n} Matches at least m x's, but no more than n
 abc Matches all of a, b, and c in order
 a|b|c Matches one of a, b, or c
 \b Matches a word boundary (outside [] only)
 \B Matches a non-word boundary
 ^ Anchors match to the beginning of a line or string
 $ Anchors match to the end of a line or string

String_repeat(s0, ntimes) as string return a string containing ntimes repeats of s0.

String_replace_lineendings(s0, sline_ending) returns s0 with all of the line endings

replaced with sline_ending.

String_reverse(s0) as string return s0 with all of the characters in reversed order.

296

String_show_gremlins(s0) as string return s0 with all the control characters replaced
with printable ascii control names in bra-kets (e.g. chr(9) is replaced with
<tab>).

String_soundex(s0) as string return the sounded code for the string s0 (first letter
followed by a three digit numeric code).

String_speak(talk_string, Qinterrupt) use the system voice to speak talk_string and
interrupt prior speaking if Qinterrupt is true. Selecting the system voice is
computer and operating system dependent. This function usually does not work
on unix platforms.

String_split(source, sdelim) as string split source string up into sarray() based on
delimiter sdelim as follows: sarray=string_split("1, 2, 3, 4, 5", ", ") Note that
sarray is redimensioned to equal the size necessary and that the first element is
put into sarray(1) (sarray(0) is set to a null string).

String_split_by_regex(s0, spattern) split string s0 into fields delimited by the regular
expression, spattern.

String_split_quoted(s0, sdelim, Q) as string() split s0 into fields based on sdelim
respecting the quotes, and if Q is true, remove the quotes.

String_time_and_date as string returns the time and date when the program was first
run in format: 9:18:44 AM Friday, December 10, 2004

 Update the date to the current date and time by calling update_time.
String_zap_gremlins(s0) as string remove all control characters in s0 except for the

local end-of-line characters that are present.
String_zap_multiple_spaces(s0) as string replace all contiguous spaces (2 or more)

into single spaces.
Sub sname(..) start of a subroutine where the name is sname. Following the name come

the parameters in parentheses. Subroutines can only returned modified variables
that are preceded by the keyword “byref”. However, arrays are automatically
passed byref. Subroutines within a class definition with subnames `constructor`
or `destructor` are executed upon instantiation of the class variable (constructor)
or when the class variable goes out of scope (destructor). Note that `sub
constructor` is not called by the system in the event that the class is instantiated
with initialization parameters. If the first parameter is preceded by "extends"
then the subroutine is called as an extension of a variable of the type specified
following the extends. The subroutine name is then added following a period to
the right of the variable upon which it operates, or extends.

Swap(v1, v2) or Swap(v1(), i1, i2) swaps the values in two double or integer variables
or two array elements of a double or integer one-dimensional array. If swapping
array elements, the entire array is passed and the variables i1 and i2 represent the
elements to be swapped.

297

System_compiler_optimization_level as integer read only variable that returns the
optimization level as set under the compiler menu.

System_compiler_version as string returns the version of the internal XojoScript
compiler that is being used to compile the Scriptor/MathScriptor code.

System_compile_time as double read only variable that returns the most recent
compile time in microseconds.

System_computer_information as string returns information on the computer that is
being used to run Scriptor. Sample information for a Mac (left) and a Windows
(right) computer is listed below:

Mac OS Version: Mac OS X 10.9.5
Gestalt: Mac OSX Mavericks 10.9.5
CPU: Intel(R) Core(TM) i7-3820QM CPU @ 2.70GHz

Total physical RAM: 16.000 GB
Unused (available) physical RAM: 0.148 GB
Mac Serial Number: C02J6453DKQ5
Mac Model: MacBookPro10, 1
Mac UUID: F0761E5C-C99E-5380-9CC1-
7A2546CB7090
User name: Sabrina Colchester
Computer name: Sabrina’s MacBook Retina
Machine ID:
215F87D0C35BDA5008BB5C775BA0BDF2
Mac Address: 20:C9:D0:43:AC:BB
Mac VRAM Size: 256 MegaBytes
Mac has Hardware accelerated CoreImage: true

Windows OS Version: Windows 7 Service Pack 1
(Build 7601)
Gestalt: Windows 7 Build 7601 Service Pack 1
Major version number of the operating system:
6Build Number: 7601
Service Pack Information:
Service Pack 1
Windows Product Key:
BBBBB-BBBBB-BBBBB-BBBBB-BBBBB

CPU: Intel(R) Core(TM) i7-3820QM CPU @ 2.70GHz

Total physical RAM: 4.000 GB
Unused (available) physical RAM: 2.104 GB
User name: sabrina
Computer name: SABRINACOLCHESTER55FD
Machine ID: 14EA53EED7342711381BD8710310D8A2

System_convert_filename(fname) as string returns the filename with separators
converted to the local system environment.

System_fontname(ifontnumber) as string returns a valid fontname for font number
ifontnumber. Use the system variable, system_number_of_fonts to discover the
number of available fonts.

System_fontname_label as string returns a fontname that is appropriate for labeling
plots.

298

System_fontname_mono as string returns a valid monospaced (non-proportional) font
that is available on the current system. If there are none to be found, a null string
is returned. Andale Mono, Courier, Courier New, Monaco, and Prestige are
examples of mono-spaced fonts.

System_fontname_sans as string returns a valid sans serif font that is available on the
current system. If there are none to be found, a null string is returned. A sans
serif font is one which lacks the small features at the edges of the letter, called
“serifs”, which were added to make type more readable. Helvetica, Arial,
Futura, Geneva, Gill Sans, Lucida Sans, Impact, Verdana are common sans serif
fonts. The “sans” adjective is French for “without”.

System_fontname_serif as string returns a valid serif font. If there are none to be
found, a null string is returned. A serif font is one which has non-structural
details on the ends of the character strokes that were originally designed to make
the typefaces easier to read, particularly when the type was small. Times, Times
New Roman, Palatino, New Century Schoolbook, Garamond, Bookman,
Antiqua are examples of serif fonts.

System_font_available(fontname) as Boolean returns true is the font called fontname
is available in the system's font folder. Fontname is a string and must appear in
quotes.

System_number_of_fonts as integer set by the system at startup to the number of fonts
installed on the computer. You can access the names of the fonts by calling
system_fontname(ifontnumber), where ifontnumber<=this integer.

System_OS as string returns the operating system currently in use: Options are:
Windows (win32), Windows (win64), Mac Classic/non-PPC, Mac Classic/0S9,
Mac OSX (Carbon), Max OSX (Cocoa) or Linux. Set by the system at startup.
Can be used in conditionals to optimize the performance of a program on
different platforms. Current versions of Scriptor do not run on Mac Classic.

System_heap_memory as integer returns the amount of memory currently allocated to
the MathScriptor memory heap. This number includes all of the memory used to
allocate the program and its variables, but does not include memory assigned to
large arrays. which is allocated by the operating system to shared memory space.

System_number_of_fonts as integer set by the system at startup to the number of
fonts installed on the computer. You can access the fonts by using
System_fontname(ifontnumber).

System_scriptor_version as string returns the version of Scriptor (MathScriptor) that

you are using.

299

System_verbosity as integer User set variable that determines the amount of printed
output to the Main text window generated by internal functions. There are five
levels available: 0= no printing except for compiler errors

1= include run time errors
2= include run time warnings
3= include diagnostic messages (default)
4= include commentary

Tan(x) as double returns the tangent of x assuming x is in radians.
Tanh(x) as double returns the hyperbolic tangent of x.
Thread_compiletime_error global string that will contain the compile time error in the

event the thread_launch process fails due to an error in the thread code.
Thread_evaluate_string_expression(s1, ioption) as string uses a thread to evaluate the

equation in the string s1 and returns the result as a string number. If ioption=0,
only the result is returned. If ioption=1, the script that was executed is also
returned in the returned string. Any errors are reported in the main editfield.

Thread_launch(sthread or slines()) as Boolean launches the script in the string sthread
or in the string array, slines(1..n). The thread must be self stopping, but the
program can check for user_action() and/or check_for_stop_button. Print
statements can generate output, which will be placed in thread_print_output.
Errors that are found are returned in thread_compiletime_error or
thread_runtime_error. The thread can also read input placed in
thread_input_string by using the input(") statement. Any prompts in the quotes
will be ignored.

Then part of the if…then statement.

Ticks as integer time in 60ths of a second since computer was turned on.

Titlecase(s0) as string returns the string s0 with the first letter of each word capitalized

To part of the For statement construct(e.g. For i=1 to 10)

Trim(s0) as string removes leading and trailing spaces (blanks) from string s0

True is the opposite of false, and is one of the two possible states of a Boolean
expression or variable.

Type(variant extension) as integer this extension (usage = variant_variable.type)
returns the integer ID that identifies the properties of the variant: ID = 0(nil),
2(integer), 3(Int64), 4(single), 5(double), 6(currency), 8(string), 11(boolean),
16(color), where the variable type or property is listed in parentheses.

Ubound(array) as integer the index of the last element in a one-dimensional array

Ubound(array, i) as integer the index of the last element of a multidimensional array

for the ith dimension where i=1 for the first dimension, i=2 for the second, etc.

300

Until mediates do until and/or loop until statements.

Update_time updates the time_and_date string to the current time and date based on

the system clock. The absolute accuracy is determined by the accuracy of the
system clock on the computer. The relative accuracy is limited by the internal
clock of the computer, but is typically a few microseconds/day.

Uppercase(s0) as string converts all letters in the string s0 to uppercase.

Val(s0) as double converts the leading numbers in a string to a numerical value. This

command is limited and cannot handle scientific notation. For any complicated
string, use Value() instead. It is much slower, but more flexible.

Value(s0) as double converts the leading numbers in a string to a numerical value, but

has the additional capability of handling a scientific value (1.234e12) or a
number with commas (1, 234, 567.89).

iValue(s0) as integer as above but after conversion, rounds to the nearest integer.

Variant_type(v0) as integer returns the integer ID that identifies the properties of the

variant, v0; ID = 0(nil), 2(integer), 3(Int64), 4(single), 5(double), 6(currency),
8(string), 11(boolean), 16(color), where the variable type or property is listed in
parentheses. This same information can be generated by using the extension
.type.

variational_min(x(), y(), n, kopt) as double returns the value of x (xbest) for which y
is a minimum for a data set x(1), y(1), x(2), y(2) ... x(n), y(n) where n=3 or 4.
Best results are obtained for n=3 under a majority of cases. kopt is a byref
integer, and returns 0 if the min was found within the data set x(1)..x(n),
otherwise +1 if xbest is larger than all value, -1 if xbest is smaller than all values.
There is an arprec version of this routine available (arprec_variational_min(...)).

Wend last statement in a while…wend loop (see below).

While testcondition first statement of a while…wend loop where the testcondition is

evaluated at the start of each loop and the loop is exited after wend when
testcondition is false.

Zeta(s1) as complex string returns zeta for complex argument s1 (=real, imaginary)

for abs(s1)<400.

301

Zeta_critical_abs(x) as double evaluates the function abs(zeta(0.5+x*I)) for real
values of x using an algorithm optimized for critical line calculations. Very
large x is possible, with an evaluation time proportional to sqrt(x).

zeta_critical_root(n) as double returns the nth root of zeta along the critical line. The

function returns the value of s where |zeta(0.5+s*I)|=0.0 for the nth zero
crossing. Values of n<=2, 001, 040 are allowed. Values of n>2, 001, 040 return
an estimate of the root that can be used to search for a more accurate value using
zeta_critical_abs(). The largest available root is returned by the function
zeta_critical_root(-1). By convention, zeta_critical_root(0) = 1.0, even though
no such root exists.

The following extensions are available. All sorting operations on arrays include the
zeroth element.

Extension Result
a1.append adds an element to the array and assigns the value that follows
a1.pop returns the last element in a1() and decreases the size of a1 by 1
a1.sort sorts the a1 one-dimensional array in ascending order
a1.sortwith(b1) sorts a1 as above and sorts b1 (same size as a1) according to a1
a1.shuffle randomly shuffles all the elements in the one-dimensional array a1

variant.type returns an integer representing the variant type

clr.red returns or sets the level of red (0..255) in the color variable clr
clr.green returns or sets the level of green (0..255) in the color variable clr
clr.blue returns or sets the level of blue (0..255) in the color variable clr

clr.hue returns or sets the hue (0.0-1.0) of the color variable clr
clr.saturation returns or sets the saturation (0.0-1.0) of the color variable clr
clr.value returns or sets the value (0.0-1.0) of the color variable clr

clr.cyan returns or sets the level of cyan (0.0-1.0) in the color variable clr
clr.magenta returns or sets the level of magenta (0.0-1.0) in the color variable clr
clr.yellow returns or sets the level of yellow (0.0-1.0) in the color variable clr

302

COMPILER ERROR LIST

Error Number followed by description. If the error is common, a short clarification is
added in italics. Note that the newest XS versions of Scriptor do not use error numbers
but rather a sentence that explicitly states not only the error but the section of the line in
which the error occurred.

01 Syntax does not make sense. This error is common and simply indicates the

compiler is confused by the line of code and cannot even figure out what you are
trying to do.

02 Type mismatch. You are using a variable of the wrong type in a function or
subroutine that expects a different variable type.

03 Select Case does not support that type of expression. You are using an expression
in the Select Case statement that is too complex. Simplify or use a variable
defined by a previous expression.

04 not used (obsolete)
05 The parser's internal stack has overflowed. Simplify your code or break up your

program into smaller segments.

06 Too many parameters for this function call.
07 Not enough parameters for this function call.
08 Wrong number of parameters for this function call.
09 Parameters are incompatible with this function. You are trying to use one or more

parameters that is of the wrong type.
10 assignment of an incompatible data type. Your expression is mixing data types.

11 Undefined identifier. Very common error caused by using a variable that has not

been defined in a Dim or Const statement.
12 Undefined operator. The operator is not recognized. Usually a spelling error.
13 Logic operations require Boolean operands.
14 Array bounds must be integers.
15 Can't call a non-function. You are probably using an array as if it were a function.

16 Can't get an element from something that isn't an array.
17 Not enough subscripts for this array's dimensions.
18 Too many subscripts for this array's dimensions.
19 Can't assign an entire array. Scriptor requires that individual array elements be

assigned individually. You cannot, for example, use A = 0.0 to set an entire array
to zero, or set A = B, where A and B are arrays.

20 Can't use an entire array in an expression. see above

303

21 Can't pass an expression as a ByRef parameter. Because a ByRef assignment is a
pointer to a location in memory, you must pass the variable that defines the
memory location, and not an expression.

22 Duplicate identifier. You are trying to dimension the same variable twice. You
can redim as many times as you desire, but you must dim only once.

23 The backend code generator failed. Compilers are not perfect. Please report this
error with a copy of the code that generated the error to rbirge@uconn.edu.

24 Ambiguous call to overloaded method. Method overloading must be defined so
that there is no ambiguity in selecting which method to call. If the number of
parameters is the same, the data types must be different.

25 Multiple inheritance is not allowed. You can only have one parent class.
26 Cannot create an instance of an interface. Not implemented in Scriptor.
27 Cannot implement a class as though it were an interface.
28 Cannot inherit from an object that is not a class.
29 This class does not fully implement the specified interface. When you specify a

class interface, the class that implements this class interface must be a perfect
match. The matching methods must use the same parameter types and return types
as the corresponding method in the class interface. If you omit one or more of
these methods, then you will receive this error.

30 Event handlers cannot live outside of a class. If you are defining an event handler,
it must be inside a defined class.

31 It is not legal to ignore the result of a function call. If you call a function, that
function by definition must return a result, and that result must be placed into the
appropriate variable.

32 Can't use the keyword "Self" outside of a class.
33 Can't use the keyword "Me" outside of a class.
34 Can't return a value from a Sub. You probably should have set this method up as a

function, not a subroutine. Otherwise, remove the return statement.
35 An exception object required here.

36-39 Obsolete. Please email rbirge@uconn.edu if one of these error numbers is

generated and include a copy of the program, or program section, that generated
the error.

40 Destructors can't have parameters.
41 Can't use "Super" keyword outside of a class.
42 Can't use "Super" keyword in a class that has no parent.
43 This #else does not have a matching #if preceding it.
44 This #endif does not have a matching #if preceding it.

45 Only Boolean constants can be used with #if.

304

46 Only Boolean constants can be used with #if.
47 The Next variable (%1) does not match the loop's counter variable (%2).
48 The size of an array must be a constant or number.
49 You can't pass an array to an external function.
50 External functions cannot use objects as parameters.
51 External functions cannot use ordinary strings as parameters. Use CString,

PString, WString, or CFStringRef instead.
52 This kind of array can not be sorted.
53 This property is protected. It can only be used from within its class.
54 This method is protected. It can only be called from within its class.

55 This local variable or constant has the same name as a Declare in this method. You

must resolve this conflict.
56 This global variable has the same name as a global function. You must resolve this

conflict.
57 This property has the same name as a method. You must resolve this conflict.
58 This property has the same name as an event. You must resolve this conflict.
59 This global variable has the same name as a class. You must resolve this conflict.

60 This global variable has the same name as a module. You must change one of

them.
61 This local variable or parameter has the same name as a constant. You must

resolve this conflict.
62 (%1) is reserved and can't be used as a variable or property name.
63 There is no class with this name.
64 The library name must be a string constant.

65 This Declare Function statement is missing its return type.
66 You can't use the New operator with this class.
67 This method doesn't return a value.
68 End quote missing.
69 A class cannot be its own superclass.

70 Cannot assign a value to this property.
71 Cannot get this property's value.
72 The if statement is missing its condition.
73 The current function must return a value, but this Return statement does not

specify any value.
74 Parameter options (%1) and (%2) are incompatible.

75 Parameter option (%1) was already specified.
76 A parameter passed by reference cannot have a default value.
77 A ParamArray cannot have a default value.
78 An Assigns parameter cannot have a default value.
79 An Extends parameter cannot have a default value.

305

80 Only the first parameter may use the Extends option.
81 Only the last parameter may use the Assigns option.
82 An ordinary parameter cannot follow a ParamArray.
83 Only one parameter may use the Assigns option.
84 Only one parameter may use the ParamArray option.

85 A ParamArray cannot have more than one dimension.
86 The keyword "Then" is expected after this if statement's condition.
87 Syntax error in #Pragma statement or other compiler directive
88 Constants must be defined with constant values.
89 Illegal use of the Call keyword.

90 No cases may follow the Else block.
91 (%1) is not a legal property accessor type.
92 This (%1) accessor must end with "End (%1)", not "End (%2)".
93 Duplicate method definition.
94 The library name for this declaration is blank.

95 This If statement is missing an End If statement.
96 This Select Case statement is missing an End Select statement.
97 This For loop is missing its Next statement.
98 This While loop is missing its Wend statement.
99 This Try statement is missing an End Try statement.

100 This Do loop is missing its Loop statement.
101 Too few parentheses.
102 Too many parentheses.
103 The Continue statement only works inside a loop.
104 There is no (%1) block to (%2) here.

105 Shared methods cannot access instance properties.
106 Shared methods cannot access instance methods.
107 Shared computed property accessors cannot access instance properties.
108 Shared computed property accessors cannot access instance methods.
109 The constructor of this class is protected, and can only be called from within this

class.

110 This string field needs to specify its length.
111 Structures cannot contain (%1) fields.
112 Structures cannot contain multidimensional arrays.
113 Enumerated types can only contain integers.
114 An enumeration cannot be defined in terms of another enumeration.

306

115 This is a constant; its value can't be changed.
116 A string field must be at least 1 byte long.
117 The storage size specifier only applies to string fields.
118 A structure cannot contain itself.
119 (%1) is a structure, not a class, and cannot be instantiated with New.

120 (%1) is an enumeration, not a class, and cannot be instantiated with New.
121 This type is private, and can only be used within its module.
122 Class members cannot be global.
123 Module members must be public or private; they cannot be protected.
124 Members of inner modules cannot be global.

125 A Dim statement creates only one new object at a time.
126 A constant was expected here, but this is some other kind of expression.
127 This module is private, and can only be used within its containing module.
128 Duplicate property definition.
129 This datatype cannot be used as an array element.

130 Delegate parameters cannot be optional.
131 Delegates cannot use Extends, Assigns, or ParamArray.
132 The Declare statement is illegal in Scriptor or MathScriptor.
133 It is not legal to dereference a Ptr value in an Scriptor or MathScriptor.
134 Delegate creation from Ptr values is not allowed in Scriptor or MathScriptor.

135 Duplicate constant definition.
136 Ambiguous interface method implementation.
137 Illegal explicit interface method implementation. The class does not claim to

implement this interface.
138 The interface does not declare this method.
139 This method contains a #if without a closing #endif statement.

140 This interface contains a cyclical interface aggregation.
141 The extends modifier cannot be used on a class method.
142 You cannot assign a non-value type to a value.
143 Duplicate attribute name.
144 Delegates cannot return structures.

145 You cannot create a delegate from this identifier.
146 You cannot use an Operator_Convert method to on an interface.
147 The ElseIf statement is missing its condition.
146 This type cannot be used as an explicit constant type.
149 Recursive constant declaration error.
150 Custom error created using #error.

307

Appendix 2. Glossary of Terms used in Programming

Here we define terms that are commonly used in the programming literature. Some of
the terms are only appropriate to certain languages or programming environments such
as Java, Fortran or C++. It is important to understand these terms if you are to make
effective use of the literature. Where appropriate, we discuss the terms as they apply to
MathScriptor. Note that only those terms that are commonly used in other languages
are included here. For a glossary of terms and keywords unique to MathScriptor, see
Appendix 1.

abstract class A class that contains one or more abstract methods, and therefore can
never be instantiated. Abstract classes are defined so that other classes can extend them
and make them concrete by implementing the abstract methods. Abstract classes do not
exist in MathScriptor.

abstract method A method that has no implementation.

alpha value A value that indicates the opacity of a pixel.

API Application Programming Interface. The specification of how a programmer
writing an application accesses the behavior and state of classes and objects. In
MathScriptor, this is done using the TIDE as described in Chapter 1.

appliances Hardware that is normally available on the local intranet and to which a
program can communicate or control by using TCP/IP protocols. A printer or a servo
motor controller are examples of appliances.

applet A small program, often written in Java, that can run independently or within an
application such as a web browser. The term does not refer to a small program that
runs exclusively on an Apple computer.

argument A data item specified in a method call. An argument can be a literal value, a
variable, or an expression.

array A variable that has two or more values which are addressed by using integer
variable. For example, the array a(

ASCII American Standard Code for Information Interchange. A standard assignment of
7-bit numeric codes to represent characters. Some are visible (such as the letters of the
alphabet) and some are control characters such as the tab, carriage return and line feed.
The ASCII codes are listed in Appendix ASCII.

308

atomic An operation that is never interrupted or left in an incomplete state under any
circumstance.

binary operator An operator that has two arguments or when operating on a variable,
will return a value that is either 0 (or true) or 1 (or false).

bit The smallest unit of information in a digital computer, with a value of either 0 or 1.

bitwise operator An operator that manipulates two values comparing each bit of one
value to the corresponding bit of the other value.

block A section of code that is contained within a set of delimiters (as in Java, C, C++,
and Pascal) or selected by using conditionals (as in MathScriptor, Basic, C, C++ and
FORTRAN). MathScriptor uses the reserved symbols { and } to delimit blocks of data
within classes (see classes below).

boolean An expression or variable that can have only a true or false value.

bounding box A raster graphics object that is the smallest rectangle that completely
encloses all the pixels that are not fully transparent.

break A statement that when encountered will cause the program to stop execution to
allow user intervention or to providing debugging information.

byte A sequence of eight bits.

casting The operation of converting one data type into another. For example,
converting an integer variable into a floating point variable involves a casting operation.

class An explicit set of instructions that define the function of an object and the
variables and methods that are part of the object. Each object must be a member of a
class, and each class can be a member of a superclass, from which it will inherit some of
its properties, variables and methods. Classes are considered one of the highest level
objects in object oriented programming because of their intrinsic power.

class method A method that is invoked without reference to a particular object. Class
methods affect the class as a whole, not a particular instance of the class. Also called a
static method. In MathScriptor, methods (subroutines or functions) can be defined
without formal association with any class.

309

class variable A data item associated with a particular class as a whole--not with
particular instances of the class. Class variables are defined in class definitions. Also
called a static field. In MathScriptor, there are three types of class variables: public,
private and local. Public variables are available to all objects that are instantiated. This
includes the Main program that is controlling the flow. Private variables are only
available to methods that are within the class. Local variables are only available within
the method that defines them, and cannot be accessed by other methods either inside or
external to the class.

client In the client/server model of communications, the client is a process that
remotely accesses resources of a server. An email program that downloads email from
the server is a common example of a client.

closed-form solution A set of equations or expressions provides a closed-form solution
if it can be expressed in terms of a finite number of well-defined functions which when
evaluated provide a numerical result. An infinite series is an example of a solution
which is not closed-form. A closed-form solution is sometimes referred to as an
explicit solution.

comment Explanatory text that is ignored by the compiler. In MathScriptor, comments
are indicated by using the single quote ('), double slashes (//) or the REM statement.
All text following these text elements is treated as a comment until an end-of-line
character is encountered.

common block A block of memory assigned within Fortran to allow different
subroutines or functions to share the same memory and/or pass values to one another.
The availability of common blocks makes Fortran extremely efficient at using memory.
At the same time, common blocks violate virtually all of the tenants of object-oriented
structured programming design because common blocks allow free access to the
memory and a programming error in one object can affect all other objects that use the
same common block. Common blocks are no longer available in MathScriptor as the
same functionality can be obtained in a more transparent way by using data files or the
spreadsheet.

compiler A program to translate source code into the machine code that is executed by
the computer. A compiler typically carries out its function in a separate operation prior
to running the program, and in the case of MathScriptor, the program is compiled fully
prior to running. This approach differs from an interpreter which steps through the code
one line at a time and compiles each line separately. Compilers generate code that is
much faster than interpreters. However, interpreters can start up almost instantly. The
compiler within MathScriptor is a very fast compiler and operates with a speed that
rivals most interpreters.

310

compositing The process of superimposing one image on another to create a single
image.

constructor A pseudo-method that creates an object. Constructors are instance methods
that run when a class is instantiated. In MathScriptor, the constructor is a subroutine
within the class definition with the name constructor. Constructors are invoked using
the new keyword.

constants A variable that is defined once and not allowed to change values during the
and cannot be altered. A constant in MathScriptor is defined using the const
name=value statement. If you try and redefine it within the program, the program
refuses to run, but does not issue a run-time error statement.

crash When a program encounters a runtime error that has not been trapped by the
programmer, it is not uncommon for the program to simply quit. This can happen when
MathScriptor encounters are request for runtime memory that is beyond what is
physically available. In modern operating systems like Windows XP and Mac OSX, the
operating system then takes over and opens a small window that notifies the user that
the program has quit unexpectedly. This is known as a soft crash because the computer
is still running and the program is the only casualty. Earlier Windows or Mac operating
systems often responded to a program crash with a subsequent crash of the operating
system. This is known as a hard crash because you need to restart the computer.
Programmers have benefited significantly from the development of modern operating
systems which protect memory, monitor programs and allow a user to force quit a
program that has become stuck in an infinite loop or is unresponsive for another reason.

critical section A segment of code in which a thread uses resources (such as certain
instance variables) that can be used by other threads, but that must not be used by them
at the same time.

debugging The act of removing coding errors in a program so that it functions the way
the programmer intended. In the MathScriptor TIDE, there is a menu item called
debugging that provides various options that help the programmer identify errors.

declaration A statement that establishes an identifier and associates attributes with it,
without necessarily reserving its storage (for data) or providing the implementation (for
methods). In MathScriptor, when you dimension a variable, memory space is allocated
based on the size and type of variables. You can, however, redimension an array during
runtime at which point additional memory can be allocated as necessary.

311

definition A declaration that reserves storage (for data) or provides implementation (for
methods).

deprecation The act of specifying a class, interface, constructor, method or field that
was once used in previous versions of the software as no longer recommended. A
depreciated component will likely not be supported in subsequent versions.

destructor An optional subroutine within a class definition that is run automatically
when the class goes out of scope. The routine can help reset memory or variables that
were used by the class. It is optional in MathScriptor because the compiler is able to
handle memory allocation and garbage collection automatically so that in most cases a
destructor is not required.

distributed Code that is running in more than one address space on the same or on
different hardware. A distributed computer is one which has more than one processor
and normally has multiple memory regions which can be independently addressed by
the local processor.

double A keyword used to define a floating point variable of type double. In
MathScriptor this data type provides approximately 16 digits of precision, and can take
on values from 2.2250738585072013 E-308 to 1.7976931348623157 E+308. In Fortran
and other Extended Basic languages, this variable would be defines as Real*16 or
Double Precision. A double variable uses 8 bytes (64 bits) of memory.

double precision A floating point number that holds 64 bits of data. Languages and
compilers differ on how many bits are assigned to the exponent and how many are
assigned to the mantissa (the number), but typically the number has 16 bits of precision
and the exponent has 2-3 digits of precision. In MathScriptor, the double data type is a
double precision number.

else A keyword used to execute a block of statements in the case that the test condition
with the "if" keyword evaluates to false.

encapsulation The localization of knowledge within a module. Because objects
encapsulate data and implementation, the user of an object can view the object as a
black box that provides services. Instance variables and methods can be added, deleted,
or changed, but as long as the services provided by the object remain the same, code that
uses the object can continue to use it without being rewritten. See also instance variable,
instance method.

exception An event during program execution that prevents the program from
continuing normally; generally, an error. See also exception handler.

312

exception handler A block of code that reacts to a specific type of exception. If the
exception is for an error that the program can recover from, the program can resume
executing after the exception handler has executed.

extends A term used to describe the use of a new class to add functionality to another
class upon which it is based or replace the class. For example, if class XP extends class
X, it does so by the addition of new methods.

floating point The designation of a variable or a math operation that includes the
decimal portion of a number. MathScriptor supports two types of floating point
numbers represented using the keywords single or double.

for An extended basic and MathScriptor programming language keyword used to
declare a loop that reiterates statements. The programmer can specify the statements to
be executed, exit conditions, and initialization variables for the loop.

FTP The basic Internet File Transfer Protocol. FTP, which is based on TCP/IP,
enables the fetching and storing of files between hosts on the Internet. See also TCP/IP.

formal parameter list The parameters specified in the definition of a particular method.

function An object that is a method. A function must return a value and that value must
be assigned to a variable of the correct type.

garbage collection The automatic detection and freeing of memory that is no longer in
use. There are principally two types of garbage collection. The older type uses "mark
and sweep" collection to monitor memory usage, and is fast but inefficient and can
sometimes produce a memory leak where each access to a method uses up additional
memory simply because the marking process is inaccurate. MathScriptor uses
"reference-counting" to monitor memory usage. While slower, it avoids memory leaks.

goto This is a reserved MathScriptor programming language keyword. However, it
should not be used unless absolutely necessary because it can destroy the structure of
the program flow and make it more difficult to understand and maintain the code. Some
languages no longer provide this keyword to force structure, but MathScriptor includes
it for compatibility and to help users transfer code from Fortran and Basic, where goto
statements are common.

GUI Graphical User Interface. Refers to the techniques involved in using graphics,
along with a keyboard and a mouse, to provide an easy-to-use interface to some
program. The MathScriptor TIDE is an example of a GUI.

313

hexadecimal The numbering system that uses 16 as its base. The marks 0-9 and a-f (or
equivalently A-F) represent the digits 0 through 15. A hexadecimal representation of a
number can be generated in MathScriptor by using the hex(value) command, which
returns a string. See also octal.

hierarchy A classification of relationships in which each item except the top one
(known as the root) is a specialized form of the item above it. Each item can have one or
more items below it in the hierarchy.

host A server which allows other users or computers controlled access to information
via the internet. A local host is normally inside the same building, university or
company. An external host is normally outside your local internet domain.

HTML HyperText Markup Language. This is a file format, based on SGML, for
hypertext documents on the Internet. It is very simple and allows for the embedding of
images, sounds, video streams, form fields and simple text formatting. References to
other objects are embedded using URLs.

HTTP HyperText Transfer Protocol. The Internet protocol, based on TCP/IP, used to
fetch hypertext objects from remote hosts.

identifier A generic term that is used to represent a named property (variable) or object
(method or subroutine). This term is most often encountered in MathScriptor in the
form of the "undefined" or "duplicate" identifier errors which mean the compiler has
found a name for which neither a function, subroutine or variable with the same name
has been defined.

IDL Interface Definition Language. APIs normally written in the Java(TM)
programming language that provide standards-based interoperability and connectivity
with CORBA (Common Object Request Broker Architecture).

if A keyword used to conduct a conditional test and execute a block of statements if a
test condition evaluates to true. Virtually all modern languages provide some form of if
statement. The associated set of conditionals within MathScriptor include: if … then …
elseif … else … end if.

immutable In object-oriented and functional programming, an immutable object is an
object whose state cannot be modified after it is created. This is in contrast to a mutable
object, which can be modified after it is created. An object can be either entirely
immutable or some attributes in the object may be declared immutable; for example,
defining selected variables within a subroutine to be of type const. In some cases, an

314

object is considered immutable even if some internally used attributes change but the
object's state appears to be unchanging from an external point of view. The initial state
of an immutable object is usually set at its inception, but can also be set before actual
use of the object. For example, a variant is mutable when first created, but once
assigned a value and a type, the variant become immutable except for its value.

Immutable objects are often useful because some costly operations for copying
and comparing can be omitted, simplifying the program code and speeding execution.
However, making an object immutable is usually inappropriate if the object contains a
large amount of changeable data. Because of this, many languages allow for both
immutable and mutable objects.

inheritance The concept of classes automatically containing the variables and methods
defined in their supertypes. See also superclass, subclass.

instance An object of a particular class, or a class that has been instantiated.

instantiate The act of activating a class object so that it is available for use in the
program. In MathScriptor, this is done using the New command.

integer A programming language keyword used to define a variable of type integer,
which is a whole number that has no fractional component. For example, 3 is an
integer, but 3.14159 is a real or floating point number. An integer in MathScriptor is a
32-bit whole number in the range ± 2, 147, 483, 648 (±231). Most languages would call
this a long integer, and their default integer is a 16-bit number in the range ± 32, 768
(±215). Note that in both definition, one bit is assigned to represent the sign of the
number.

int64 A MathScriptor keyword used to define a variable of type integer, but using a 64-
bit representation, twice that of the default (long) integer. An int64 is an 18-digit whole
number in the range ±9, 223, 372, 036, 854, 775, 807.

interface A hardware or software component that serves to connect two computers, a
computer and a device. The MathScriptor Interface Panel of version 2.0 and beyond
allows a program to communicate with and collect data from Vernier LabPro
instruments.

Internet An enormous network consisting of literally millions of hosts from many
organizations and countries around the world. It is physically put together from many
smaller networks and data travels by a common set of protocols. The Internet evolved
out of the older DARPA Net project - Defense Advance Research Projects Agency
Network. The DARPA Net was used to connect computers at various military and

315

classified civilian sites around the United States together, using modems and the
existing phone line grid.

IP Internet Protocol. The basic protocol of the Internet. It enables the unreliable
delivery of individual packets from one host to another. It makes no guarantees about
whether or not the packet will be delivered, how long it will take, or if multiple packets
will arrive in the order they were sent. Protocols built on top of this add the notions of
connection and reliability. See also TCP/IP.

interface A class definition that consists of collection of subroutines and functions with
all of the parameters defined, but no code within. The interface defines the properties,
but not the behavior, of any new class that implements the interface. If a class
implements an interface, it must contain all of the elements defined by the interface, and
if it does not, the compiler rejects it and throws an error message. The purpose of an
interface is to establish a set of rules that must be followed by subsequent classes.
interpreter A module that alternately decodes and executes every statement in some
body of code. See also compiler, runtime system.

Java(TM) Sun's trademark for a set of technologies for creating and safely running
software programs in both stand-alone and networked environments.

JavaScript(TM) A Web scripting language that is used in both browsers and Web
servers. Like all scripting languages, it is used primarily to tie other components
together or to accept user input.

Just-in-time (JIT) compiler A compiler that operates on the code only when the code is
executed. This approach allows the compiler to optimize the code for the machine
environment that is available rather than for a generic computer with the same
processor. The concept is that this approach will lead to faster and smaller programs.

JPEG or Joint Photographic Experts Group An image file compression standard
established by this group. It achieves tremendous compression at the cost of introducing
distortions into the image which are usually imperceptible to the naked eye. Files
generated of this type usually end with .jpeg or .jpg extensions.

keyword Words reserved by the language and are therefore not available as names for
variables or methods created by the user. In MathScriptor, keywords are marked in
blue after a precompile.

lexical Pertaining to how the characters in source code are translated into tokens that
the compiler can understand.

316

linker A module that builds an executable, complete program from component
machine code modules. The MathScriptor compiler also carries out the function of
linking all of the program elements that you have written to those internal to the
MathScriptor context.

literal The basic representation of any integer, floating point, or character value. For
example, 3.0 is a double-precision floating point literal, and "a" is a character literal.

local variable A data item known within a block, but inaccessible to code outside the
block. For example, any variable defined within a method (function or subroutine) is a
local variable and can't be used outside the method.

mantissa The portion of a number that carries the significant digits and is multiplied by
the exponent to create the complete representation. The mantissa is also called the
coefficient or the significand.

method A function defined in a class. See also instance method, class method. In
MathScriptor, methods are either subroutines or functions.

multithreaded Describes a program that is designed to have parts of its code execute
concurrently. See also thread.

mutable When an object is mutable, it can be modified after it has been defined or
declared. Most variables are mutable which means you can assign them new values. If
a variable is immutable, once declared, it cannot be changed. A constant is an example
of an immutable object (or an immutable variable). (see also immutable)

nil A programming language keyword used to specify an undefined value for reference
variables.

object The principal building blocks of object-oriented programs. Each object is a
programming unit consisting of data (instance variables) and functionality (instance
methods). See also class.

object-oriented design A software design method that models the characteristics of
abstract or real objects using classes and objects. MathScriptor provides access to
objects in the Object Panel or as part of the Main Program in the Main or Music Panels.

octal The numbering system using 8 as its base, using the numerals 0-7 as its digits. In
MathScriptor, the function oct(value) returns a string representing the octal equivalent
of value. See also hexadecimal.

317

overloading Using one identifier to refer to multiple items in the same scope.
MathScriptor allows functions and subroutines to be overloaded, which allows two or
more methods to be defined with the same name but different numbers or types of
parameters. This capability allows the user to enhance the functionality of methods,
both user and those predefined by MathScriptor.

peer In networking, any functional unit in the same layer as another entity.

pixel The smallest addressable picture element on a display screen or printed page.

POSIX Portable Operating System for UNIX(TM). A standard that defines the
language interface between the UNIX operating system and application programs
through a minimal set of supported functions.

private A programming language keyword used in a method or variable declaration. It
signifies that the method or variable can only be accessed by other elements of its class.
For example, in MathScriptor, you can declare variables within a class to be "private
properties" or "public properties". Those variables declared under "private properties"
can only be used by methods declared within this class.

properties A generic term to identify the assignment of variables to variable types.

public A keyword used to indicate variables that can be accessed by elements residing
in the main program or in other classes.

raster A single line of pixels. A raster is normally a horizontal line of pixels in the
electronics community, but horizontal and vertical rasters are common within the
graphics community and in software engineering.

real number A floating point number that can take on fractional values. For example,
the number 3.14159 is a floating point, or real number. Real numbers in MathScriptor
can be of type Single or Double.

reference A data element whose value is an address. When the term ByRef is used in
front of a variable passed to a function or subroutine, this indicates that any changes on
this variable within the method will alter the variable that was passed because the
change will be made to the memory location. In contrast, ByVal indicates that the
value of the original variable is passed rather than a reference to the variable itself. If
you make changes to a ByVal variable within a method, the changes are lost upon exit
and the original variable is unaffected. In MathScriptor, all variables without a
reference declaration default to ByVal except arrays which are always passed ByRef
regardless of reference declaration.

318

return This keyword indicates that the variable that follows is to be returned by the
function to the calling program and the function excited. Subroutines are not allowed to
return variables using this statement, but can return results ByRef (see above).

runtime (run-time) The time during which the program is actually running. When a
program is running, most of the characteristics of memory allocation and variable typing
has been carried out during the compilation and further changes are not allowed.
However, there are important exceptions allowed by MathScriptor. String variables are
dynamically allocated in memory based on the length of the character string assigned to
the variable. In addition, arrays can be redimension using the Redim statement which
allows runtime changes in memory allocation. This flexibility comes as a price in that if
there is not enough memory to handle the reallocation, the program will crash.

scope A characteristic of a variable or identifier that determines where the identifier
can be used. Most identifiers have either class or local scope. Instance and class
variables and methods have class scope and cannot be accessed outside of the class.

Secure Socket Layer (SSL) A protocol that allows communication between a Web
browser and a server to be encrypted for privacy.

single precision A term used in Fortran, Java and other languages to indicate a real
variable stored with 32-bits of precision. In MathScriptor, the term "single" is used by
itself to indicate this variable type, which can take on values between –1.175494 e-38
and 3.402823 e+38.

SGML Standardized Generalized Markup Language. An ISO/ANSI/ECMA standard
that specifies a way to annotate text documents with information about types of sections
of a document.

SQL Structured Query Language is an ANSI/ISO standard used to create, modify,
retrieve and manipulate data from relational database management systems.
MathScriptor makes use of the SQL date and time format in selected statements, where
the format is defined as: YYYY-MM-DD HH:MM:SS and as such can be parsed
precisely by software because the position of each numerical value is fully defined in
terms of absolute position.

319

static A term that indicates that a variable is kept in memory at all times. In most
languages, the local variables within a method (function or subroutine) are removed
from memory when the routine is complete and control has been passed back to the
main program. In MathScriptor, you can designate a variable as static by using a
Module or Class and declaring the variable as a member of the Public Properties.

static field Another name for a public class variable.

static method A common term used to indicate a Class Method.

subroutine An object that is a method. A subroutine does not return a value but can
alter the variables that are passed to it by reference (ByRef). In MathScriptor, all arrays
are automatically passed ByRef regardless of declaration.

TCP/IP Transmission Control Protocol based on IP. This is an Internet protocol that
provides for the reliable delivery of streams of data from one host to another. See also
IP.

thread The basic unit of program execution. A process can have several threads
running concurrently, each performing a different job, such as waiting for events or
performing a time-consuming job that the program doesn't need to complete before
going on. When a thread has finished its job, the thread is suspended or destroyed. See
also process.

Unicode A 16-bit character set defined by ISO 10646. See also ASCII.

URL Uniform Resource Locator. A standard for writing a text reference to an arbitrary
piece of data in the WWW. A URL looks like "protocol://host/local_designator" where
protocol specifies a protocol to use to fetch the object (like HTTP or FTP), host
specifies the Internet name of the host on which to find it, and local_designator is a
string (often a file name) passed to the protocol handler on the remote host.

variable An item of data named by an identifier. Each variable has a type, such as
double, integer or string. See also class variable, instance variable, local variable.

virtual machine An abstract specification for a computing device that can be
implemented in different ways, in software or hardware. You compile to the instruction
set of a virtual machine much like you'd compile to the instruction set of a
microprocessor.

320

void A C++ or Java programming language keyword used in method declarations to
specify that the method does not return any value. "void" can also be used as a
nonfunctional statement in these languages. In MathScriptor, a method that does not
return a value is called a subroutine, although values can be returned by using the ByRef
keyword with one or more of the variables passed in the subroutine argument list. In
contrast, all MathScriptor functions must return a value and the value must be assigned
to an appropriate variable in the calling routine. Although all functions must return a
value, this value can be ignored by the calling routine by placing the keyword “call” in
front of the function in place of the variable.

WANDA Working Application Not Doing Anything. A snippet of code or a collection
of program elements that have correct syntax but when run do nothing, or nothing
useful. A WANDA is often used to demonstrate a programming concept or turned in as
part of a homework assignment. A term coined by the computer science department at
Carnegie Mellon in the 1980s.

while A keyword used to declare a loop that iterates a block of statements. The loop's
exit condition is specified as part of the while statement as in: while x>0 … wend

wrapper An object that encapsulates another object to alter its interface or behavior in
some way.

WWW World Wide Web. The web of systems and the data in them that is the Internet.
See also Internet.

321

Appendix 3.
ASCII Codes, and their character and control representations

===
Dec Octal Hex Binary Value Special Meaning
--- ----- --- -------- ----- ----------------------------
000 000 000 00000000 NUL (Null char.)
001 001 001 00000001 SOH (Start of Header)
002 002 002 00000010 STX (Start of Text)
003 003 003 00000011 ETX (End of Text)
004 004 004 00000100 EOT (End of Transmission)
005 005 005 00000101 ENQ (Enquiry)
006 006 006 00000110 ACK (Acknowledgment)
007 007 007 00000111 BEL (Bell)
008 010 008 00001000 BS (Backspace)
009 011 009 00001001 HT (Horizontal Tab)
010 012 00A 00001010 LF (Line Feed)
011 013 00B 00001011 VT (Vertical Tab)
012 014 00C 00001100 FF (Form Feed)
013 015 00D 00001101 CR (Carriage Return)
014 016 00E 00001110 SO (Shift Out)
015 017 00F 00001111 SI (Shift In)
016 020 010 00010000 DLE (Data Link Escape)
017 021 011 00010001 DC1 (XON) (Device Control 1)
018 022 012 00010010 DC2 (Device Control 2)
019 023 013 00010011 DC3 (XOFF)(Device Control 3)
020 024 014 00010100 DC4 (Device Control 4)
021 025 015 00010101 NAK (Negative Acknowledgement)
022 026 016 00010110 SYN (Synchronous Idle)
023 027 017 00010111 ETB (End of Trans. Block)
024 030 018 00011000 CAN (Cancel)
025 031 019 00011001 EM (End of Medium)
026 032 01A 00011010 SUB (Substitute)
027 033 01B 00011011 ESC (Escape)
028 034 01C 00011100 FS (File Separator)
029 035 01D 00011101 GS (Group Separator)
030 036 01E 00011110 RS (Request to Send)(Record Separator)
031 037 01F 00011111 US (Unit Separator)
032 040 020 00100000 SP (Space)
033 041 021 00100001 ! (exclamation mark)
034 042 022 00100010 " (double quote)
035 043 023 00100011 # (number sign)
036 044 024 00100100 $ (dollar sign)
037 045 025 00100101 % (percent)
038 046 026 00100110 & (ampersand)
039 047 027 00100111 ' (single quote)
040 050 028 00101000 ((left/opening parenthesis)
041 051 029 00101001) (right/closing parenthesis)
042 052 02A 00101010 * (asterisk)
043 053 02B 00101011 + (plus)
044 054 02C 00101100 , (comma)
045 055 02D 00101101 - (minus or dash)
046 056 02E 00101110 . (dot or period)
047 057 02F 00101111 / (forward slash)
===

322

Appendix 3. Ascii Codes (continued)
===
Dec Octal Hex Binary Value Special Meaning
--- ----- --- -------- ----- ----------------------------
048 060 030 00110000 0
049 061 031 00110001 1
050 062 032 00110010 2
051 063 033 00110011 3
052 064 034 00110100 4
053 065 035 00110101 5
054 066 036 00110110 6
055 067 037 00110111 7
056 070 038 00111000 8
057 071 039 00111001 9
058 072 03A 00111010 : (colon)
059 073 03B 00111011 ; (semi-colon)
060 074 03C 00111100 < (less than)
061 075 03D 00111101 = (equal sign)
062 076 03E 00111110 > (greater than)
063 077 03F 00111111 ? (question mark)
064 100 040 01000000 @ (AT symbol)
065 101 041 01000001 A
066 102 042 01000010 B
067 103 043 01000011 C
068 104 044 01000100 D
069 105 045 01000101 E
070 106 046 01000110 F
071 107 047 01000111 G
072 110 048 01001000 H
073 111 049 01001001 I
074 112 04A 01001010 J
075 113 04B 01001011 K
076 114 04C 01001100 L
077 115 04D 01001101 M
078 116 04E 01001110 N
079 117 04F 01001111 O
080 120 050 01010000 P
081 121 051 01010001 Q
082 122 052 01010010 R
083 123 053 01010011 S
084 124 054 01010100 T
085 125 055 01010101 U
086 126 056 01010110 V
087 127 057 01010111 W
088 130 058 01011000 X
089 131 059 01011001 Y
090 132 05A 01011010 Z
===

323

Appendix 3. Ascii Codes (continued)
===
Dec Octal Hex Binary Value Special Meaning
--- ----- --- -------- ----- ----------------------------

091 133 05B 01011011 [(left/opening bracket)
092 134 05C 01011100 \ (back slash)
093 135 05D 01011101] (right/closing bracket)
094 136 05E 01011110 ^ (caret/cirumflex)
095 137 05F 01011111 _ (underscore)
096 140 060 01100000 `
097 141 061 01100001 a
098 142 062 01100010 b
099 143 063 01100011 c
100 144 064 01100100 d
101 145 065 01100101 e
102 146 066 01100110 f
103 147 067 01100111 g
104 150 068 01101000 h
105 151 069 01101001 i
106 152 06A 01101010 j
107 153 06B 01101011 k
108 154 06C 01101100 l
109 155 06D 01101101 m
110 156 06E 01101110 n
111 157 06F 01101111 o
112 160 070 01110000 p
113 161 071 01110001 q
114 162 072 01110010 r
115 163 073 01110011 s
116 164 074 01110100 t
117 165 075 01110101 u
118 166 076 01110110 v
119 167 077 01110111 w
120 170 078 01111000 x
121 171 079 01111001 y
122 172 07A 01111010 z
123 173 07B 01111011 { (left/opening brace)
124 174 07C 01111100 | (vertical bar)
125 175 07D 01111101 } (right/closing brace)
126 176 07E 01111110 ~ (tilde)
127 177 07F 01111111 DEL (delete)
===

324

Appendix 4.
Selected Mathematical Rules, Formulas and Definitions

The following set of mathematical rules and formulas were selected to facilitate solving
of the problems in this book. When both a positive and negative sign appear, the top
sign is used throughout or the bottom sign is used throughout. Thus if f ± g = r +– s,
then f + g = r – s or f – g = r + s. All trigonometric functions are in radians (1 rad
=57.2958°).

1. Trigonometric and Geometric Relationships:

 sin α sin β = cos (α – β) – cos (α + β) (A4.1.1)
 cos α cos β = cos (α – β) + cos (α + β) (A4.1.2)
 sin α cos β = sin (α + β) + sin (α – β) (A4.1.3)
 sin (α ± β) = sin α cos β ± cos α sin β (A4.1.4)
 cos (α ± β) = cos α cos β ± sin α sin β (A4.1.5)
 cos2(α) + sin2(α) = 1 (A4.1.6)
 tan α = sin α / (cos α) (A4.1.7)

right triangles:
 sin θ = opposite/hypotenuse, (A4.1.8a)
 cos θ = adjacent/hypotenuse, (A4.1.8b)
 tan θ = opposite/adjacent, (A4.1.8c)
equilateral triangle of height h and base b: area = 12 (b h) (A4.1.9a)
rectangle of length l and width b: area = b h (A4.1.9b)
circle of radius r: area = π r2; circumference = 2 π r (A4.1.9c)
ellipse with radii a and b: area = π a b; perimeter π(a + b) (A4.2.0a)
sphere of radius r: surface area = 4 π r2; volume = 43 π r3; surface area = 4 π r2 (A4.2.0b)

cylinder of radius r and height h: volume = π r2 h; surface area = 2 π r h + 2 π r2 (A4.2.0c)

1
2

1
2

1
2

1
2

1
2

1
2

325

2. Complex Numbers

 Ν = a + bi = |N|eiθ (A4.2.1)
 where a is a real number and represents the "real part",
 b is a real number and represents the "imaginary part" and
 i = -1 is the imaginary number (electrical engineers use j).
 Note that 1/i = 1/i × (i/i) = –i.

 |N| = N* N = a2 + b2 (magnitude or modulus) (A4.2.2)

 θ = arctan (b/a) (A4.2.3)

N* = a – bi (if N = a + bi)
N* = a + bi (if N = a – bi) } (complex conjugate) (A4.2.4)

 (a + bi) + (c + di) = (a + c) + (b + d)i (addition) (A4.2.5)
 (a + bi) – (c + di) = (a – c) + (b – d)i (subtraction) (A4.2.6)
 (a + bi)(c + di) = (ac – bd) + (bc + ad)i (multiplication) (A4.2.7)

(a + bi)
 (c + di) =

(ac + bd)
 (c2 + d2) +

 (bc – ad)
(c2 + d2) i (division) (A4.2.8)

 e±iθ= cos θ ± i sin θ (Euler's formula) (A4.2.9)

 cos θ =
eiθ + e–iθ

2 (A4.2.10)

 sin θ =
eiθ – e–iθ

2i (A4.2.11)

 aeib = a cos b + ia sin b (A4.2.12)

 Re(aeib) = a cos b (real part) (A4.2.13)

 Im(aeib) = a sin b (imaginary part) (A4.2.14)

 [aeib]* = ae–ib (conjugate) (A4.2.15)

 |aeib| = a (magnitude) (A4.2.16)

326

3. Laws of Logarithms and Series Expansions

 log(ab) = log(a) + log(b) (A4.3.1)

 log(a/b) = log(a) – log(b) (A4.3.2)

 log(an) = n log(a) (A4.3.3)

 ƒ(x) = ƒ(a) + ƒ'(a)(x – a) +
1
2! ƒ''(a)(x – a)2 +

1
3! ƒ'''(a)(x – a)3

 + ... +
1
n!

 fn'(a)(x-a)n (Taylor Series of n terms)

 eax = 1 + ax +
a2x2

2! +
a3 x3

3! +
a4x4

4! + ... (A4.3.4)

 e–ax = 1 – ax +
a2x2

2! –
a3 x3

3! +
a4x4

4! –
a5x5

5! +... (A4.3.5)

 cos x = 1 –
x2

2! +
x4

4! –
x6

6! + ... (A4.3.6)

 sin x = x –
x3

3! +
x5

5! –
x7

7! + ... (A4.3.7)

1

1 – x = 1 + x + x2 + x3 + x4 + ... (x2 < 1) (A4.3.8)

 (1 ± x)n =1 ± nx +
n(n – 1)

2! x2

 ±
n(n – 1)(n – 2)

3! x3 + ... (x2 < 1) (A4.3.9)

327

4. Selected Derivatives

 The following formulas assume that a, b and c are scalar constants or formulas
which are not a function of x, and that n is an integer. Note that Exp[ax] is an
alternative notation for eax.

 d
dx a f(x) = a

d
dx f(x) (constant rule)

 d
dx () f(x) + g(x) =

d
dx f(x) +

d
dx g(x)(sum rule)

 d
dx () f(x) • g(x) = ⎝⎜

⎛
⎠⎟
⎞g(x) d

dx f(x) • ⎝⎜
⎛

⎠⎟
⎞ f(x) d

dx g(x) (product rule)

d
dx ⎝⎜

⎛
⎠⎟
⎞ f(x)

g(x) =
g(x) d

dx f(x) – f(x) d
dx g(x)

 [g(x)]2 (division rule)

d
dx () f [g(x)] =

d
dg f(x) d

dx g(x) (chain rule)

 d
dx xn = nxn–1

d
dx xa/b = (a/b) x(a/b)–1 (A4.4.1)

 d
dx ex = ex d

dx ae–bx = –ab e–bx (A4.4.2)

 d
dx xex = xex + ex d

dx xe–x = e–x (A4.4.3)

 d
dx sin(ax) = a cos(ax)

d
dx cos(ax) = –a sin(ax) (A4.4.4)

 d
dx tan(ax) = a sec2(ax) (A4.4.5)

d
dx ax =

d
dx (e x ln(a)) = ax ln(a) (A4.4.6)

d
dx Exp

⎝
⎜
⎛

⎠
⎟
⎞– a (b – x)2

 c2 =
2 a (b–x)

 c2 Exp
⎝
⎜
⎛

⎠
⎟
⎞– a (b – x)2

 c2 (A4.4.7)

 d
dx aeix = ai eix (A4.4.8)

328

5. Selected Integrals

 The following formulas assume that a, b and c are scalar constants or
expressions which are not a function of x, that m and n are integers, and that δmn is the
Kronicker delta which equals zero at all times, but unity when m=n [δmn = 1 (m=n); 0
(m≠n)].

xe−ax2

dx
0

∞

∫ = 1
2a

 (A4.5.1)

e−ax2

dx
0

∞

∫ = π
4a

⎛
⎝⎜

⎞
⎠⎟

1/2

 (A4.5.2)

eax2

dx
0

∞

∫ = − (−aπ)1/2

2a
 (A4.5.3)

exp

(x − a)2

b2

⎛
⎝⎜

⎞
⎠⎟

dx
−∞

∞

∫ = −ib π (A4.5.4)

xne−ax dx
0

∞

∫ = n!
an+1 (n positive) (A4.5.5)

x2ne−ax2

dx
0

∞

∫ =
1⋅3⋅5⋅⋅⋅ 2n−1()

2n+1an

π
a

⎛
⎝⎜

⎞
⎠⎟

1/2

(n positive) (A4.5.6)

x2n+1e−ax2

dx
0

∞

∫ = n!
2an+1 (npositive integer) (A4.5.7)

 ⌡⌠
0

a
sin

nπx
a sin

mπx
a dx =⌡⌠

0

a
cos

nπx
a cos

mπx
a dx =

a
2 δnm (A4.5.8)

 ⌡⌠
0

a
sin

nπx
a x sin

nπx
a dx =

a2

4 (A4.5.9)

 ⌡⌠
0

a
sin

nπx
a x2 sin

nπx
a dx =

a3

 6 –
a3

4 n2 π2 (A4.5.10)

329

 ⌡⌠
0

a
sin

nπx
a

d
dx ⎝⎜

⎛
⎠⎟
⎞sin

nπx
a dx =

nπ
a ⌡⌠

0

a
sin

nπx
a cos

nπx
a dx = 0 (A4.5.11)

 ⌡⌠
0

a
sin

nπx
a

d2

dx2 ⎝⎜
⎛

⎠⎟
⎞sin

nπx
a dx =

 – n2 π2

 2 a (A4.5.12)

 ⌡⌠
0

a
sin

nπx
a x sin

mπx
a dx =

–2 a2 m n
 (m2 – n2)2 π2

 +
a2 cos[(m–n)π]
 2 (m – n)2 π2 –

a2 cos[(m+n)π]
 2 (m + n)2 π2 (A4.5.13)

 ⌡⌠
0

a/2
sin

nπx
a (b/i) d

dx ⎝⎜
⎛

⎠⎟
⎞sin

nπx
a dx = –

i b
2 sin2

⎝⎜
⎛

⎠⎟
⎞ n π

2 (A4.5.14a)

 ⌡⌠
a/2

a
sin

nπx
a (b/i) d

dx ⎝⎜
⎛

⎠⎟
⎞sin

nπx
a dx =

− ib

2
1+ 2cos nπ()()sin2 nπ

2
⎛
⎝⎜

⎞
⎠⎟

 (A4.5.14b)

 ⌡⌠
a

b
xndx =

bn+1

 n+1 –
an+1

 n+1 (n positive) (A4.5.15)

 ⌡⎮
⌠

a

b

1
x dx = ln(b) – ln(a) (A4.5.16)

 ⌡⌠
a

b
 e–cx dx =

1
c eac –

1
c ebc (A4.5.17)

 ⌡⌠
a

b
 e–x2 dx = b e–x2 – a e–x2 (A4.5.18)

330

6. Vectors and Tensors

We limit our examples to three-dimensional cartesian vectors and tensors. A function is
said to be scalar if it has a single value at a given location in space {x, y, z}. In contrast,
a vector function has both a magnitude and a direction, and thus requires three numbers.
We normally use boldface to differentiate between a vector, F(x, y, z) from a scalar, f(x,
y, z):

 (A4.6.1)

where î , ĵ , and k̂ are unit vectors in the x, y and z directions, respectively. A unit
vector is a unitless vector that points in a particular direction with a length equal to
unity.

 The dot product of two vectors, A and B, produces a scalar which is equal to the
product of the magnitudes of the two vectors times the cosine of the angle, θ, between
the two vectors:

 A ⋅B=| A ||B |cosθ =axbx + ayby + azbz (A4.6.2)

where we have adopted the abbreviation, ax, to represent ax(x, y, z), the component of
the vector A along the x axis. The magnitude of a vector is obtained by taking the square
root of the sum of the squares,

 |A| = ax2 + ay2 + az2 (A4.6.3)

 The cross product of two vectors produces another vector which is determined
by the evaluation of the following determinant:

 A × B=

ˆ i ˆ j ˆ k
ax ay az

bx by bz

 = aybz −azby() ˆ i + az bx − axbz() ˆ j + axby −aybx() ˆ k (A4.6.4)

There are also a number of operations on vectors and scalars which evaluate the partial
derivatives of these elements. A majority are based on the “del” or “grad” operator:

F(x, y,z) = fx(x,y,z) ˆ i + fy (x, y, z) ˆ j + fz (x, y, z) ˆ k

331

 ∇ = ˆ i
∂
∂x

+ ˆ j
∂
∂y

+ ˆ k
∂
∂z
 (A4.6.5)

When this operator is applied to a scalar function, it returns a vector which has a
magnitude equal to the slope of the function in the direction of the greatest rate of
change of the function, and which points in the same direction. This function is of great
utility in both classical and quantum mechanical calculations. This operator can also be
applied to a vector, and this operation results in the formation of a second rank tensor of
3×3 = 9 components.

 More common are the two operations that involve the combination of the “del”
operator with the dot or cross product operations to produce the divergence or curl of the
function. The divergence of a vector produces a scalar quantity given by the following
formula:

 ∇⋅A=
∂ax
∂x

+
∂ay
∂y

+
∂az
∂z

 (A4.6.6)

The curl of the same vector, A, is represented as curlA, or ∇ ×A , and is generated via
evaluation of the following determinant:

 ∇ ×A=

ˆ i ˆ j ˆ k
∂

∂x

∂

∂y

∂

∂z
ax ay az

 (A4.6.7)

Finally, we note that an important operator, ∇2 =∇⋅∇ , known as the Laplacian is
defined by the relationship:

 ∇2A =
∂2ax
∂x2

+
∂ 2ay
∂y2

+
∂2az
∂z 2

 (A4.6.8)

332

7. Matrices

 A majority of calculations on the electronic and vibrational properties of
molecules are based on the use of matrix mechanics, which allows the representation of
very complex systems in a systematic and conveniently programmable form. A square
matrix is one which has the same number of rows as columns, and in the case of a 3×3
matrix, can be represented as follows:

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

⎛

⎝

⎜
⎜ ⎜

⎞

⎠

⎟
⎟ ⎟ (A4.7.1)

where we refer to the rows of a matrix via the first subscript and the columns by the
second subscript. A matrix is called “square” if it has the same number of rows and
columns. A matrix is called “diagonal” if only the elements along the “diagonal”, aii,
are nonzero. A unit matrix is a special case of a diagonal matrix, and is generated by the
equation aij = δij, where δij is the delta function, which equals zero when i ≠ j and 1
when i = j. If we use the same convention to represent a matrix B, then the sum of two
matrices, A + B, produces a new matrix, C, generated by the summation of the
corresponding elements:

 cij = aij + bij (A4.7.2)

Thus, two matrices can only be added if they have the same number of rows and
columns. Matrix multiplication is more complicated than the simple multiplication of
corresponding elements. Rather, each new element is generated by a summation of
individual products:

 C[n×m]=A[n× ] • B[×m] (A4.7.3)

cij = aik

k=1



∑ bkj (A4.7.4)

Thus, two matrices can only be multiplied if the first matrix has the same number of
columns as the second matrix has rows. If A is a n× l matrix and B is a l× m matrix,
then the resultant matrix C has dimensions n × m. The result of matrix multiplication is
normally not commutative: A • B ≠B •A .

333

8. Matrix Operators

 A matrix operator is a set of instructions, defined for some vector space, for
changing one vector into a second vector belonging to the same space. Operators and
transformation matrices are essentially equivalent. Usually, the term "operator" is
reserved for the analysis or manipulation of physical quantities while "transformation" is
applied to the manipulation of coordinates or coordinate systems.

 A linear operator obeys the following relationships:

 A(cα) = cAα, where c is a real or complex constant (A4.8.1)

 A(α + β) = Aα + Aβ, where α and β are vectors (A4.8.2)

 A linear operator is represented by a square matrix. A Hermitian operator is a
linear operator with real diagonal elements and real or complex off-diagonal elements.
It is self adjoint, which means that aij = aij*, where the "*" superscript indicates the
complex conjugate (see E.2.15 above). Thus, if all elements are real, a Hermitian
operator is a square symmetric matrix. A Hermitian operator in an n-dimensional vector
space has n distinct eigenvectors and n real eigenvalues. One or more of the
eigenvalues may be identical, indicating a degeneracy due to symmetry or accident. If
H is the Hermitian operator, then we can write:

Hϕ1=h1ϕ1

Hϕ2 =h2ϕ 2



Hϕn =hnϕ
n

 (A4.8.3)

whereϕ i represents the ith eigenvector and corresponds to hi, the ith eigenvalue. We
can write the above set of n equations in a compact form as follows:

 HC=CE (A4.8.4)

where E is now a n×n diagonal matrix with the eigenvalues along the diagonal (hi = eii),
and C is a n×n square matrix with the eigenvectors in columns. If we take the inverse of
C to produce C-1 (the inverse is defined such that C-1•C = 1), and multiply both sides
by C-1, we get:

 C−1HC= E (A4.8.5)

334

which represents a fundamental mathematical operation in quantum mechanics. Viewed
in this form, the eigenvector matrix C is said to diagonalize the matrix H to generate the
diagonal matrix E containing the eigenvalues. The operation C−1HC represents a
unitary transformation of H. Modern molecular orbital theory relies on matrix
diagonalization to find the energies and coefficients of the molecular orbitals that
describe the wavefunctions of the electrons.

335

Appendix 5

Values of the Fundamental Constants and Derived Relationships in the SI and cgs Unit Systems(a)

Quantity Symbol SI System CGS System

speed of light in vacuum c 2.99792458 × 108 m/s 2.99792458 × 1010 cm/s
permeability of vacuum µο 4π × 10-7 N m-2 1 (dimensionless in emu)
permittivity of vacuum (µοc2)-1 εο 8.854187817 × 10-12 F/m 1 (dimensionless in esu)
elementary charge e 1.60217733 × 10-19 C 4.8032068 × 10-10 cm3/2 g1/2/s

gravitational constant G 6.67428 × 10-11 m3/(kg s2) 6.67428 × 10-8 cm3/(g s2)
standard gravity go 9.80665 m/s2 980.665 cm/s2

planck constant h 6.6260689× 10-34 J s 6.6260689 × 10-27 erg s
planck reduced (h/2π) ! 1.054571628 × 10-34 J s 1.054571628 × 10-27 erg s
planck mass [(hc/2πG)1/2] mP 2.17644 × 10-8 kg 2.17644 × 10-5 g
planck constant (molar) NAh 3.990312682 × 10-10 J s/mol 3.990312682 × 10-3 erg s/mol
 NAhc 0.1196265647 J m/mol 1.1962658647× 108 erg cm/mol

 standard atmosphere atm 101325 Pa (exact) 1.01325 × 106 dyn/cm2 (exact)
 permeabilty (dry air) µair 4π × 10-7 N/m2 (exact) 1 (dimensionless in emu)
 permittivity (dry air at STP) εair 1.000590 F/m 1.000590 × 10-2 F/cm
 spec. heat (dry air const. P) Cpair 1.00468 × 103 J/(kg K) 1.00468 × 107 erg/(g K)
 spec. heat (dry air const V) Cvair 7.17625 × 102 J/(kg K) 7.17625 × 106 erg/(g K)
 app. mol. wt. (dry air) Mwair 2.89652 × 10-2 kg/mol 28.9652 g/mol
 mol. gas const. (1kg dry air) Rair 287.05 J/kg K 2.8705 × 106 erg/(g K)

 Avogadro constant NA 6.02214179 × 1023 mol-1 6.02214179 × 1023 mol-1
 atomic mass unit u 1.66053878 × 10-27 kg 1.66053878× 10-24 g
 electron volt eV 1.602176487 × 10-19 J 1.602176487 × 10-12 erg
 faraday constant F 9.6485342 × 104 C/mol 2.892557 × 1014 cm3/2 g1/2/(s mol)
 Boltzmann constant (R/NA) k 1.3806504 × 10-23 J/K 1.3806504 × 10-16 erg/K
 k/h 2.083674 × 1010 Hz/K 2.083674 × 1010 Hz/K

 stefan-boltzmann constant σ 5.67051 × 10-8 W/(m2 K4) 5.67051 × 10-3 erg/(cm2 s K4)
 first radiation constant (2πhc2) c1 3.7417749 × 10-16 W m2 3.7417749 × 10-3 erg cm2/s
 second radiation constant (hc/k) c2 0.01438769 m K 1.438769 cm K
 wien displacement law constant b 2.897768 × 10-3 m K 0.2897768 cm K
 ideal gas molar volume at STP Vm 22.41400 L/mol 22414.00 cm3/mol
 molar gas constant Rg 8.314472 J/mol K 8.314472 × 107 erg/(mol K)
 8.314472 Pa m3/mol K 8.314472 × 107 dyn cm/mol K
 0.082057459 L atm/mol K 82.057459 cm3 atm/mol K

336

Appendix 5 continued

Quantity Symbol SI System CGS System

 fine-structure constant (µοce2 2h) α 7.2973525376 × 10-3 7.2973525376 × 10-3
 rydberg constant (mecα2/2h) R∞ 1.0973731568 × 107 m-1 1.0973731568 × 105 cm-1
 R∞hc 2.17987197 × 10-18 J 2.17987197 × 10-11 erg
 bohr radius (α/4πR∞) ao 5.291772086 × 10-11 m 5.291772086 × 10-9 cm
 quantum of circulation h/2me 3.63694752 × 10-4 m2/s 3.63694752 cm2/s
 elementary charge e 1.602176487 × 10-19 C 4.80320680 × 10-10 cm3/2 g1/2/s
 e/h 2.41798945 × 1014 A/J 8.0655410 × 10-3 1/(s cm1/2 g1/2)

 magnetic flux quantum (h/2e) Φο 2.06783367 × 10-15 Wb 2.06783367 × 10-7 Mx
 josephson frequency-voltage quo. 2e/h 4.8359789 × 10-14 Hz/V 4.8359789 × 10

22
 s/(cm3/2 g1/2)

 quantized hall resistance RH 25812.807 Ω 25812.807 Ω

 bohr magneton (eh/4πme) µB 9.27400915 × 10-24 J/T 9.27400915 × 10-21 erg/Gs
 5.788381756 × 10-5 eV/T 4.2543812 × 10-10 Ry cm2/Mx

 nuclear magneton (eh/4πmp) µN 5.05078324 × 10-27 J/T 5.05078324 × 10-24 erg/Gs
 3.152451233 × 10-8 eV/T 1.44616226 × 106 Ry cm2/Mx

 electron mass me 9.10938215 × 10-31 kg 9.10938215 × 10-28 g
 compton wavelength (h/mec) λc 2.426310218 × 10-12 m 2.426310218 × 10-10 cm
 classical electron radius (α2ao) re 2.817940289 × 10-15 m 2.817940289 × 10-13 cm
 thomson cross section [(8π/3)re2] σe 6.65245856 × 10-29 m2 6.65245856 × 10-25 cm2
 electron magnetic moment µe -9.2847638 × 10-24 J/T -9.2847638 × 10-21 erg/Gs

 proton mass mp 1.67262164 × 10-27 kg 1.67262164 × 10-24 g
 proton compton wavelength (h/mpc) λcp 1.32141002 × 10-15 m 1.32141002 × 10-13 cm
 proton magnetic moment µp 1.41060761 × 10-26 J/T 1.41060761 × 10-23 erg/Gs
 neutron mass mn 1.6749286 × 10-27 kg 1.6749286 × 10-24 g
 neutron magnetic moment µn 9.6623707 × 10-27 J/T 9.663707 × 10-24 erg/Gs

(a) From Mohr, Taylor and Newell, Rev. Mod. Phys. 80, 633-730 (2008).

337

Appendix 6
Selected Conversion Factors

Property from to multiply by

length cgs SI 10-2 m / cm
 cgs (Å) 108 Å / cm
 SI (Å) 1010 Å / m
 au SI 5.29177249 × 10-11 m
 au (Å) 0.529177249 Å
 (inches) (cm) 2.54 cm / in
 (foot) (m) 0.3048 m / foot

time au SI; cgs 2.41888434 × 10-17 s

velocity au SI; cgs 2.18769141 × 106 m / s

energy cgs SI 10-7 J / erg
 cgs (eV) 6.24150637 × 1011 eV / erg
 SI (eV) 6.24150637 × 1018 eV / J
 au SI 4.35974819 × 10-18 J
 au (eV) 27.2113961 eV

force cgs SI 10-5 N / dyne
 SI au 1.21377939 × 107 / N
 au cgs 0.00823872945 dyne
 au SI 8.23872945 × 10-8 N

linear momentum cgs SI 10-5 N / dyne
 au cgs 1.99285336 × 10-19 dyne s
 au SI 1.99285336 × 10-24 N s

current cgs SI 3.335640952 × 10-10 A s/esu
 SI cgs 2.99792458 × 109 esu / (A s)
 au cgs 1.98571165 × 107 esu / s
 au SI 0.00662362109 A

magnetic flux cgs SI 10-4 T / gauss
density SI cgs 104 gauss / T
 au cgs 2.35051808 ×109 gauss
 au cgs 0.0784048438 esu s / cm3
 au SI 235051.808 T

magnetic cgs SI 10-3 gauss J / (erg T)
dipole moment SI cgs 103 erg T / (gauss J)
 au cgs 1.85480308 × 10-20 erg/gauss
 au SI 1.85480308 × 10-23 J / T
 au SI 1.85480308 × 10-23 A m2

(a) Symbols for the atomic units are not included for clarity and convenience. The number of

decimal digits meet or exceed the number justified based on the accuracy of the
fundamental constants. The 3.335640952 factor has an exact value of 10/2.99792458.

338

Appendix 6. Selected Conversion Factors(a)

Property from to multiply by

dipole moment cgs SI 3.335640952 × 10–12 C m / (cm esu)
 SI cgs 2.99792458 × 1011 cm esu / (C m)
 cgs (debye) 1018 debye / (cm esu)
 SI (debye) 2.99792458 × 1029 debye / (C m)
 eÅ (debye) 4.8032068 debye/ (eÅ)
 au cgs 2.54174776 × 10–18 cm esu
 au SI 8.47835793 × 10–30 C m
 au (debye) 2.54174776 debye

electric field cgs SI 29979.2458 V cm2 / (esu m)
 SI cgs 3.335640952 × 10–5 esu m / (V cm2)
 au cgs 1.71525604 × 107 esu / cm2
 au SI 5.14220823 × 1011 V / m
Polarizabilities:

first order cgs SI 1.11265006 × 10–16 F m2 / cm3
 SI cgs 8.98755178 × 1015 cm3 / (F m2)
 cgs (Å) 1024 Å3 / cm3
 au cgs 1.48184744 × 10–25 cm3
 au SI 1.64877764 × 10–41 F m2

second order cgs SI 3.71140110 × 10–21 esu F2 m3 / (C cm5)
 SI cgs 2.69440024 × 1020 C cm5 / (esu F2 m3)
 esu cgs 1 cm5 / esu
 esu SI 3.71140110 × 10–21 F2 m3 / C
 au cgs 8.63922007 × 10–33 cm5 / esu
 au SI 3.20636109 × 10–53 F2 m3 / C

third order cgs SI 1.23799015 × 10–25 esu2 F3 m4 / (C2 cm7)
 SI cgs 8.07760869 × 1024 C2 cm7 / (esu2 F3 m4)
 esu cgs 1 cm7 / esu2
 esu SI 1.23799015 × 10–25 F3 m4 / C2
 au cgs 5.03669416 × 10–40 cm7 / esu2
 au SI 6.23537777 × 10–65 F3 m4 / C2

 (a) Symbols for the atomic units are not included for clarity and convenience. The number of

decimal digits meet or exceed the number justified based on the accuracy of the
fundamental constants. The 3.335640952 factor has an exact value of 10/2.99792458.

339

340

341

Appendix 8
SI, cgs, esu, emu, Gaussian and Atomic Units

 Scientific programmers rarely deal with units within their programs, having
stripped these units from the equations prior to entering the math operations.
Nevertheless, keeping track of the units is essential or the math will be meaningless.
The purpose of this appendix is to help students deal with the various types of units that
are in common use. The majority of this book uses the "Systeme International d'Unites"
or International System of Units which has been recommended for use since 1960.
Nevertheless, other unit systems are used as convenient and common. Many researchers
working in photonics have adopted esu units, while a majority of theoretical papers
present both formulas and computational results using atomic units (au). Chemists and
biophysicists have been relatively slow to convert to SI units, and to read the literature
one must be conversant with both cgs and SI nomenclature. In a majority of instances,
conversion is a trivial exercise. However, in the case of electrostatics, magnetostatics
and nonlinear optics, conversion is neither trivial nor transparent. The confusion arises
primarily due to the presence of factors such as 4π, εo (the permittivity of vacuum), µo
(the permeability of vacuum) and c (the speed of light in vacuum) in equations based on
SI units which are absent from the comparable equation based on cgs or esu systems.
Thus, in this appendix we also discuss the origin and rational for introducing these
quantities, which should help a student navigate among the various unit systems.

 Historically, scientists used a combination of systems to define units. The basic
system was known as the centimeter-gram-second (cgs) system, within which magnetic
quantities were measured by using electromagnetic units (emu) and electrostatic
quantities were measured in electrostatic units (esu). This approach is called a "mixed"
system of units and because geometric factors are often excluded from the basic
definitions, "irrational". There are significant advantages in adopting the SI system of
units which is both internally coherent and geometrically rational. First, the ampere is
now treated as a fundamental unit in addition to the meter, kilogram and second. By
introducing the ampere as a fundamental unit, electrostatic and electromagnetic
interactions can be handled in a more direct and rationale way and square roots no
longer appear in dimensional expressions. Second, all electrostatic and electromagnetic
quantities can now be expressed in units coherent with the four fundamental units. The
frequent appearance of c in the mixed unit systems is associated with the fact that there
is no separate dimension for electromagnetic properties and thus the generation of
derivative units is required. In the SI system, whenever the speed of light does appear in
an equation it is invariably associated with special relativity. Third, the SI units are
rationalized so that factors of 4π only appear when they are justified based on geometry.
Fourth, the permeability and permittivity of free space are now included in equations
and are assigned specific values. Within the mixed system of units, both of these
constants are dimensionless and equal to unity. Thus, they are frequently omitted from

342

cgs-based equations, which obscures their fundamental relevance. In addition, the
magnetic field strength (represented by the symbol H) is often used in place of the
magnetic flux density (represented by the symbol B) because both are identical under
vacuum conditions within the mixed system. All observable physical properties,
however, depend solely on B. Any confusion is avoided within the SI system because B
and H differ by a factor of the permeability (µo) forcing the use of B in the appropriate
equations.

 Despite the above mentioned advantages of the SI system, there are some
disadvantages that have precluded uniform adoption in many realms of science and
engineering. This problem is most evident in chemistry and where the SI units of
hyperpolarizabilities are complex and appear to lack any intuitive origin. Many
researchers have therefore retained the use of electrostatic units in both experimental
and theoretical publications. Furthermore, there is a vast amount of early literature that
is based on the cgs system. Thus, one is forced to understand both the SI and the mixed
system of units. Following our discussion of the SI system, we will discuss the cgs,
electrostatic and atomic unit systems in sufficient detail to facilitate use and
interconversion.

A8.1. SI units

 The International System of Units (SI) is also known as the (rationalized) MKSA
system because four of the base units employed are the meter, kilogram, second and
ampere. There are three types of SI units: base, supplementary and derived. The seven
base units are regarded as being dimensionally independent and are listed in Table A8.1

Table A8.1. The Seven Base Units of the International System of Units.

Physical quantity SI Name SI Symbol Dimension

 length meter m L
 mass kilogram kg M
 time second s T
 electric current ampere A A

 thermodynamic temperature kelvin K
 luminous intensity candela cd
 amount of substance mole mol

 The meter is defined as of 1983 as the path length traveled by light in a vacuum
during a time interval of 1/(299 792 458) of a second. By making this definition of

343

length, the speed of light is now an exact quantity (c = 299 792 458 m/s). This
definition of length has significant advantages over that which prevailed in the middle
ages when the foot was used to measure distance and the value depended upon the
ruling monarch's anatomy. The kilogram is defined based on the 1901 international
prototype of the kilogram. The second is defined as of 1967 to be equal to the duration
of 9 192 631 779 periods of the radiation corresponding to the transition between the
tow hyperfine levels of the ground state cesium-133 atom. Thus, time marked by using
a cesium clock represents the best possible method of monitoring both absolute and
relative time in the laboratory. The ampere is defined as of 1948 as the current
necessary to produce a force of 2 × 10–7 newton per meter of length along two infinitely
long parallel conductors of negligible cross-section separated by one meter in vacuum.
While such a definition is important historically, one is better off thinking of the ampere
as representing the current equivalent of one coulomb of charge per second flowing
through a medium. The kelvin is defined as of 1967 in terms of the triple-point of
water. The zero of the Celsius scale is defined to equal 273.15 K exactly. The mole is
defined as of 1971 to equal the amount of substance of a system containing as many
elementary entities as there are atoms in 0.012 kilograms of carbon-12. The use of a
mole unit requires the explicit specification of the elementary entities, which may be
fundamental particles, ions, atoms or molecules or even specified groups of such
entities. The fundamental constant that defines this unit is Avogadro's number or
constant which equals approximately 6.022137 × 1023 entities per mole. The candela is
defined as of 1979 to be the luminous intensity of a source that emits monochromatic
radiation at 540 × 1012 hertz with a radiant intensity of 1/683 watt per steradian. The
origin of the term candela derives from the historical term "candle" or "candlepower".
Although the candela is one of the seven fundamental units, it is rarely used in practice.
Light intensity or flux is normally defined in terms of energy (in joules), or in terms of
power or radiant flux by using the derived unit of watts (watt = J s–1).

 All of the SI units, both fundamental and derived (see below), can appear with
prefixes to represent decimal multiples and submultiples. The prefix symbols are listed
in Table A.1.2 and should always appear in roman (i.e. not italic) type with no space
between the prefix and the unit symbol. For example, one femtosecond is represented
by the compound symbol fs and equals 10–15 s. Multiple prefixes are not correct, and
thus one should use mg and not µkg to represent 10–3 grams and pF instead of µµF to
represent 10–12 farads.

344

Table A8.2. SI Prefixes

Fraction Prefix Symbol Multiple Prefix Symbol

 10–1 deci d 10 deka da
 10–2 centi c 102 hecto h
 10–3 milli m 103 kilo k

 10–6 micro µ 106 mega M
 10–9 nano n 109 giga G
 10–12 pico p 1012 tera T

 10–15 femto f 1015 peta P
 10–18 atto a 1018 exa E

 Although all quantities can be defined in terms of the seven base units, there are
many derived units which are in active use and have assigned symbols. The derived
units are given in Table A8.3. In addition, there are a number of units that are not part
of the SI system but which remain in active use for historical reasons, human inertia or
simple convenience. These supplementary units are presented in Table A8.4. Because
supplementary units are not formally defined, it is common practice to use the full name
of the unit rather than the symbol when first introducing the unit in scientific
publications.

345

Table A8.3. Names and Symbols for Selected SI Derived Units

Physical quantity SI unit Abbreviation Definition in base SI units

frequency hertz Hz s–1 (cycle per second)

Celsius temperature Celsius °C T(°C) = T(K) – 273.15

force newton N m kg s–2
energy joule J N m = m2 kg s–2

pressure pascal Pa N m–2 = m–1 kg s–2

power watt W J s–1 = m2 kg s–3

electric charge coulomb C A s
electric potential volt V J C–1 = m2 kg s–3 A–1 = K A–1 s–1

electric resistance ohm Ω V A–1 = m2 kg s–3 A–2
electric conductance siemens S Ω–1 = m–2 kg–1 s3 A2

electric capacitance farad F C V–1 = m–2 kg–1 s4 A2

magnetic flux weber Wb V s = m2 kg s–2 A–1
magnetic flux density tesla T V s m–2 = kg s–2 A–1
inductance henry H V A–1 s = m2 kg s–2 A–2

plane angle radian rad 1 = m/m–1
solid angle steradian sr 1 = m2/m–2

346

Table A8.4. Names and Symbols for Selected Other Units in Active Use

Physical quantity Name Symbol Value or defining relationship

time minute min 60 s
 hour h 3600 s
 day d 86 400 s

plane angle degree ° (π/180) rad
 (57.295779513082 rad/degree)

binary data entities bit b 1 (quantum of binary information)
 byte B 8 bits
 word w 16 bits unless specified otherwise

length ångstrom Å 10–10 m = 10–8 cm
 micron µ(a) µm =10–6 m
 inch in 0.0254 m

volume liter l, L dm3 = 10–3 m3 = 1000 cm3

energy electronvolt eV e × V ≈ 1.602177328 × 10–19 J
 calorie cal 4.184 J
 Hartree Eh ≈4.35974819 × 10–18 J≈27.2114 eV
 wavenumber cm–1 ≈1.98644746 × 10–23 J
 kilokaiser kK 1000 cm-1

mass amu(b) u = ma(12C)/12 ≈1.6605402 × 10–19 kg
 dalton Da = u ≈ 1.6605402 × 10–19 kg
 electron volt eV(c) eV/c2 ≈ 1.78266270 × 10–36 kg

magnetic flux density gauss G 10-4 T = 10-4 V s m-1

dipole moment debye D ≈ 3.335640952 × 10–30 C m

(a) The use of µ instead of µm is a common though incorrect practice.

(b) The amu or unified atomic mass unit is equal to the mass of carbon–12 divided by 12.
This unit is called a dalton in biology, although this name and the symbol Da, is not formally
approved by international convention.

(c) The use of eV, MeV (≈1.783 × 10–30 kg) or GeV (≈1.783 × 10–27 kg) without the c2
denominator is a common simplification, particularly in particle physics.

347

A8.2. The cgs, esu, emu and Gaussian Unit Systems

 There are four separate unit systems that have been in use extensively prior to
the adoption of the international system of units. These are the centimeter-gram-second
unit system (cgs), the electromagnetic unit system (emu) and the electrostatic unit
system (esu). When combined in a single coherent system, these three systems are
called the Gaussian unit system or simply the "cgs" system. While the latter designation
is not strictly correct, it is very common and derives from the fact that the three basic
units are the centimeter (length), gram (mass) and second (time). All other units are
derived from these three, which is a basic limitation of the system. As such, equations
involving electrostatic or magnetic quantities require the ad hoc introduction of the
speed of light.

 A majority of equations and experimental results can be converted from the cgs
to the SI unit system by simply noting that the fundamental equations involving
kilogram, -meter-second units are now converted into centimeter-gram-second units.
This conversion is for the most part trivial. The difficulty arises when working with
electrostatic or electromagnetic relationships. We will confine our discussion to the
electrostatic relationships which are particularly relevant to this book.

 The electrostatic force between charges Q1 and Q2 separated by a distance x
within a dielectric medium of relative permittivity (dielectric constant) εr is written in SI
units in the following form:

 ESI =
Q1 Q2

4π ε0 εr x
 (joules) (Α8.1)

where the charges are in coulombs, the distance is in meters, the permittivity of free
space is in faradays/meter, and the relative permittivity is dimensionless. To convert
this equation into the cgs or Gaussian system, the 4πµo is simply removed, and the
charges are expressed in electrostatic units.

 Ecgs =
Q1 Q2
εr x

 (ergs) (Α8.2)

 Two things are happening simultaneously. First, the 4π is removed from the
expression because we are moving from a rational system to an irrational system, which
basically does not take the geometric origins of the basic equations properly into
account. Second, we are combining the permittivity of the vacuum directly into the
expressed charge on the electron. Thus, in a real sense, we are expressing the charge of

348

the electron in terms of its effective electrostatic force when observed in a vacuum.
Perhaps the best way to look at this transformation is in terms of the charge on an
electron. This charge when expressed within the cgs or esu system is equal to the
charge on an electron based on the SI unit system divided by (4πεo)1/2. The following
sequence takes the charge from the SI unit system to the cgs and esu system.

 e = 1.60217733 × 10-19 C (SI units)
 µ0 = 4π × 10-7 N m-2 (SI units)
 εο = (µο c2)-1 = 8.854187817 × 10-12 F/m (SI units)
 4πε0 = 1.11265006 × 10-10 A2 s4 kg-1 m–3 (SI units)

 e
4πε0

 = 1.51890736 × 10-14 m3/2 kg1/2 s-1 (mks units)

 = 4.80320680 × 10-10 cm3/2 g1/2 s-1 (cgs units)
 = 4.80320680 × 10-10 esu (esu units)

We note that an esu is equal to one erg cm . Thus, we see that the electron charge in
cgs or esu units is not really a charge at all, but the square root of the vacuum
electrostatic energy times the square root of the length unit used to define the energy.

 All of the other quantity equations and quantities expressed within the mixed
unit system can be derived by carrying out the following set of substitutions, where the
superscript "(ir)" simply indicates the use of an irrational quantity.

 ε(ir) = 4πε permittivity (A8.3)
 µ(ir) = µ/4 π permeability (A8.4)
 D(ir) = 4 π D electric displacement (A8.5)
 H(ir) = 4 π H magnetic field (A8.6)
 χe(ir) = χe/4 π electric susceptibility (A8.7)
 χ(ir) = χ/4 π magnetic susceptibility (A8.8)

Thus, for example, the electromagnetic force between current elements I1dI1 and I2dI2
in vacuum is written in the SI system as follows:

 F = (µ0/4 π) I1dI1 × (I2dI2 × r)/r3 (A8.9)

and in the Gaussian system as:

 F = µ(ir) I1dI1 × (I2dI2 × r)/r3 (A8.10)

349

where µ(ir) = 1 (emu system).

 To facilitate conversion from the mixed systems into the SI unit system,
Appendix C is provided which explicitly presents some of the key conversion factors
relevant to the material presented in this book. In addition, the fundamental constants
which are presented in Appendix B are given in terms of both the SI as well as the
mixed unit "cgs" system.

A8.3 The Atomic Unit System

The key atomic units are presented in Appendix 7. Quantum mechanical
calculations of the electronic properties of atoms, molecules and other nanoscale
systems are often carried out by using atomic units (abbreviated: a.u.). These units form
a coherent set that has three principal advantages in theoretical chemistry. First,
theoretical expressions are simplified significantly because the fundamental constants e,
 ! and me, which often appear in such expressions, are now (by definition) equal to
unity. Thus, these constants can be removed from the expressions, which leads to
simplification (though sometimes at the expense of clarity). Selected examples will be
provided below. Second, calculations based on ab initio theoretical methods are
typically carried out in atomic units because no parameterization is adopted and all
calculations are carried out in reference to specific relationships among the fundamental
constants. By expressing all calculated values in terms of atomic units, explicit
assignment of the values of the fundamental constants are avoided. Theoretical
calculations can often be carried out at a level of accuracy that exceeds that of the
experimental assignments of the fundamental constants. Thus, by expressing calculated
values in atomic units, the results are invariant to subsequent revisions of the numerical
values of the fundamental constants. The third advantage derives from the fact that the
atomic units have been assigned based on the characteristics of atoms, and thus the
values of atomic and molecular properties when expressed in atomic units are typically
within one order of magnitude of the atomic unit which represents that property. For
example, a typical interatomic distance is 1.5 × 10-10 m but in atomic units it is about
2.83 atomic units (or as we will see below, 2.83 a0, where a0 is the symbol used to
represent the atomic unit of length). A typical dipole moment of a polar molecule is 1.2
× 10–29 C m, but in atomic units it is about 1.4 ea0, where ea0 is the derived atomic unit
for dipole moment. Thus atomic units are the natural units of atoms, molecules and
quantized nanoscale systems.

 There are five base atomic units as defined in Appendix 7A. The atomic unit of
energy, Eh, is called the Hartree and is approximately equal to twice the ionization
energy of the ground state hydrogen atom. The atomic unit of length, ao, is called the

350

bohr and is approximately equal to the distance of maximum radial density from the
nucleus in the hydrogen 1s orbital. The atomic unit of charge is equal to the elementary
proton charge, e, and the atomic unit for mass is assigned as the electron rest mass. The
atomic unit of action is assigned as the reduced Planck constant, h/2π, or !. It should be
noted, however, that only four of the five base units (me, e, ! and a0) are actually
independent. However, by convention, Eh, is also included as a base unit because of its
importance in theoretical calculations. The interrelation among these five units is
conveniently summarized in the following set of equalities:

 Eh = !2/(mea02) = e2/(4πε0a0) = mee4/(4πε0!)2 (A8.11)

 The five base units are all given or have previously been assigned unique
symbols as shown in Appendix 7A. When specifying these units, it is best to use these
symbols. For example, an energy of 22.7 Hartrees should be written 22.7 Eh rather than
22.7 a.u. A length of 1.512 bohr should be written 1.512 a0 rather than 1.512 a.u.
However, the use of the symbol a.u. (or au) is common, even with the base units, and
one must be prepared for both the preferred and the common practice when reading the
literature. All other physical quantities can be defined in terms of these five basic
atomic units and selected examples are presented in Appendix 7B. Again, it is
preferable to use a combination of the base symbols to represent the derived units. For
example, a dipole moment of 0.62 in atomic units should be written as 0.62 ea0.

 We noted above that atomic units greatly simplify quantum mechanical
equations by setting e = ! = me = 1. A salient example is the Schrödinger equation for
the hydrogen atom:

 –
!

2 me
 ∇

2
r ψ –

e2

4πε0r ψ = Eψ (Α8.12)

where ∇
2
r indicates second derivatives with respect to the spatial coordinate (or vector)

r. Dividing both sides by the various representations of Eh given in Eq. A.3.1, we get

 – 12 a02 ∇
2
r ψ –

a0
r ψ =

E
Eh

 ψ (Α8.13)

The above equation, while simplified, is still expressed in SI units. Transformation to
atomic units is carried out by expressing the coordinate variable as r' where r' = r/a0
and the eigenvalues (energies) in Hartrees, i.e. E' = E/Eh. Note that r' and E' are now
dimensionless variables that express both dimension and energy in atomic units. Eq.
A.3.3 can now be written as

351

 – 12 ∇
2
r' ψ –

1
r'

ψ = E' ψ (Α8.14)

The above equation is normally described as 'being expressed in atomic units', and
represents the principal approach adopted by theoreticians because of the notational
simplicity. Nevertheless, this approach has the distinct disadvantage of creating a
formalism that precludes dimensional analysis and therefore can lead to confusion and
error. To compound the problem, many publications and some textbooks switch back
and forth without explicit notification to the reader and without expressly changing the
variable notation.

 The advantage of writing computer programs using atomic units is significant.
A simple example is the electrostatic energy associated with two charges, Q1 and Q2,
separated by a distance r. In SI units, this is given by Eq. A8.15.

 ESI(J) =
Q1(C) Q2(C)

4π ε0(F/m) r(m)
 (Α8.15)

where the units for each variable are given in parentheses. The minimum number of
floating point operations is five, and because computer languages such as Fortran, C and
C++ do not handle symbolic math, the units must be dropped and the program properly
commented to keep track of the unit conventions and conversions that are taking place
implicitly. Furthermore, because joules are inconvenient units for expressing molecular
energies, conversion of the results to more conventional units (such as eV) invariably
takes place prior to printing out the results. In contrast, the same equation in atomic
units is as follows:

 Eau =
Q1 Q2

 r (Α8.16)

where all variables are assumed to be in atomic units. Only two floating point
operations are required and the issue of unit conversions is obviated. A single comment
can be added to the top of the computer program stating that all variables are expressed
in atomic units unless noted otherwise. Finally, because the Hartree is a convenient
output variable for energy, most programs express the eigenvalues and the total energies
in Hartrees in the final output. The probability of a programming error is minimized
and the computer code is significantly easier to read and debug. While the above
example is trivial, when one is programming a two electron integral involving four-fold
summations, the use of atomic units represents a significant advantage.

 In closing, we note that our atomic unit convention is not unique, and other
possibilities can and have been adopted in the literature. One alternative definition that
is still in use is the use of h rather than ! to represent the atomic unit of action. This

352

approach is often invisible to the reader, however, because the atomic unit of energy is
still expressed in Hartrees. The early literature, however, is not consistent with respect
to the atomic unit of energy and occasionally the adopted atomic unit is e2/(2a0) (cgs) =
e2/(8πε0a0) (SI) which is one-half of a Hartree (~13.6057 eV). Furthermore, some
publications adopt the Rydberg constant for infinite mass (R∞ = Eh/2hc = 109737.315
cm-1) as the atomic unit of energy. In a majority of such papers, however, the energies
are explicitly listed in "rydbergs", so there is no ambiguity. Note that a rydberg is also
equivalent in energy to one-half of a Hartree (~13.6057 eV). [Dividing an energy by hc
converts from joules to wavenumbers: E(joules) = hcν~ (cm-1) . A wavenumber is a
common unit of energy, particularly in spectroscopy, and is often expressed in
kiloKaysers (kK = 1000 cm-1).]

353

Appendix 9
Installation of Scriptor and MathScriptor

Scriptor and Mathscriptor reside within the same program but must be run within the
Scriptor Environment to function properly. The Environment folder is called
ScriptorWin or ScriptorOSX depending upon the target operating system (Windows or
Mac OSX). The ScriptorWin environment has also been tested on Window 7 and 8 and
function without problems, although Windows 8.1 can cause problems. These
environments are available from www.mathscriptor.org. Versions are also available for
Linux or Mac Classic by contacting R.R. Birge (rbirge@uconn.edu). The Environment
contains a collection of folders which provide resources, either for the program to
function or for the user (documentation, help files, tips, etc.). The Mac OSX
environment is shown below.

Some of these folders are empty and are present to help organize the users files and
program elements. The Windows environment looks comparable but the program
names have “exe” extensions and each .exe file will have a library file (Lib) associated
with it. MathScriptor uses many resources inside the data_sets folder. These resource
files include routines and tables that are used for numerical integration, prime numbers
and interpolation data for various functions. These files are only loaded when needed
which allows the program to be many times smaller than would be necessary if all the
data were included inside the program. During startup, MathScriptor checks to make

354

sure these resources are available and notifies the user if any are missing or corrupted.
If any problems are found, a separate program is included inside the “other_versions”
folder called gen_math_files that can be run to restore the necessary files. This same
folder also holds versions of both scriptor and gen_math_files for other selected
operating systems. However, it is still preferable to download the entire environment
for the operating system of interest to make sure all of the files are optimized for the
operating system.

The Environment can be placed at any desired location on the computer that is
convenient for the user. One can even run the program from an environment placed on
an external usb drive, a convenience when using the program as part of a class
laboratory. However, a usb drive is much slower than a hard drive and the performance
of the program is often proportional to the random access speed of the parent drive. If
the programs are small and do not involve heavy resource usage, the use of a usb drive
is a viable option.

As you choose the location of your program, keep in mind the following issues:

1. If the computer you are using is a public computer, but you have an account on the
computer, it is best to put the entire environment inside your document folder. Other
users should not have access to this folder and thus your work is protected. If the
computer is public and you have no private area on the hard disk, a usb drive that you
own may be the optimal choice.

2. If the computer belongs to you and you are the only user, select any location that is
convenient for you. However, avoid using the desktop if it is cluttered because such
placement increases the probability that you might accidentally throw the entire folder
away. However, placing an alias of the program on the desktop is safe because it is
trivial to recreate one should it be lost.

3. On a Windows system, it is common to place the environment inside your Programs
Folder and place an alias of the application on the desktop. On a Mac OSX system, it is
common to place the environment inside your user folder and place an alias of the
application in the dock.

4. Make sure to backup the entire environment on a regular basis.

355

Appendix 10
Troubleshooting and Frequently Asked Questions

This appendix provides solutions to the most common problems experienced by Scriptor
users, and answers the more common questions. These are listed in no particular order.

1. The use of arbitrary precision arithmetic, matrix operations and compilation
options are not available even though I registered the program and should have
access to MathScriptor.

Ans. Although registering the program is a necessary condition for access to
MathScriptor, the program needs to be switched into MathScriptor mode by the user.
There are two ways to switch into MathScriptor mode. First, select “Switch to
MathScriptor” under the Compiler menu. Second, go to the Preferences tab and check
“Startup program in MathScriptor”. The only time one should avoid using
MathScriptor is when one is working on a computer with less than 500 MB of memory
available. MathScriptor can run on less than that amount, but it will be making heavy
use of the disk for paging, and the result will be sluggish performance.

2. The Run and/or Stop buttons have disappeared from Main. How do I get
them back?

Ans. These buttons can become invisible if a run-time error was encountered in a
program, or the user has flipped back and forth between panels quickly. These buttons
can be restored easily by pressing the Full Screen button twice to toggle into and back
from full-screen mode

3. My program had errors in it, which I fixed. How do I now get rid of the line
numbers that were added to help identify the error so I can try running the
program again.

Ans. The Stop button turns into the Reset button when the compiler adds line numbers
to the program to help the user locate the errors. Pressing the Reset button will remove
the line numbers. Line numbers can also be toggled on and off by selecting the “Add or
Remove line numbers” under the Debug menu, or using the keyboard shortcut ctrl-L
(command-L on Mac OSX).

356

4. There are many versions of Scriptor which have the same version number,
but different letters at the end. What do these letters mean?

Ans. The following table provides a summary based on version 3.6.0.

Windows Version* Mac Version Target OS and Comments
3_6_0.exe 3.6.0.app Compiled for legacy operating systems such as XS or OSX 10.6
3_6_0LLVM.exe 3.6.0LLVM.app Compiler allows for optimization. Most stable implementation.
3_6_0XS.exe 3_6_0XS.app Advanced compiler reports both errors and warnings.
---- 3_6_0XSC.app Compiled for most recent Mac operating systems based on Cocoa**

*The LLVM and XS versions on windows require two files for each installation. One file is the program
file as named above, and the second file is a library folder of the same name but ending in “Libs” instead
of “.exe”. Both the program and the library folder must be placed at the top of the environment folder. In
general, the LLVM and XS versions are more stable on Windows 7 and Windows 8 whereas the legacy
version may be more stable on earlier operating systems.

**Cocoa is the newest Apple programming interface (API) and provides full access to the various
capabilities of MAC OSX. Carbon is an older version of the API that has been available since 2000 and
is less powerful, but because it is no longer being modified, is also more stable. Eventually, Apple will
fully deprecate Carbon in favor of Cocoa, and developers have been asked to develop new programs using
Cocoa if they expect these programs to run under upcoming versions of Mac OSX. Because we are in a
transition period, both carbon and cocoa versions are provided.

5. I upgraded Scriptor to a new version, and now I am getting all sorts of
strange errors when I start it up. What did I do wrong?

Ans. The most common cause of this problem is program placement outside of the
environment folder. Unless the program is moved into the top of the ScriptorWin (or
ScriptorOSX) folder, it cannot locate the necessary resources which generates errors
when the verification process is carried out. On Windows, this problem can be caused
by a missing library (“Libs”) folder. A third possibility is that the environment is
damaged. Copy the current environment to a backup folder, and then select the menu
item “Clean Environment” under the Help menu. Then follow any instructions that are
presented at the end of the process. If MathScriptor continues to generate checksum
errors upon startup, it may be necessary to restore the math library files by running the
gen_math_files program which is present inside the environment.

357

6. My program is in an infinite loop. How can I stop it without losing my
program, as I forgot to save the program before I ran it?

Ans. Infinite loops are common, particularly during the early stages of writing a new
program. The following operations will not only force quit Scriptor but restore your
program. You can force quit the program by using the control-alt-delete key
combination on Windows or command-option-escape key combination on Mac OSX.
These key combinations open the Task Manager on Windows or the Force Quit
Applications window on the Mac which allows you to force quit Scriptor. After
restarting Scriptor, it now remains to restore the program that was running. If the
preference, Open most recent work when program starts up, was checked, your old program
will be loaded into the Main program field. If not, go to the backups folder inside
Programs, and open up the most recent file. The backup folder contains copies of all the
programs that have been run, and the file with the most recent create date is the one that
was running most recently. It would be a good idea to fix the loop before running the
program again.

7. The trigonometric functions are not returning the correct answers.

Ans. All the internal trigonometric functions that accept an angle as an argument,
expect the argument to be in radians. Similarly, all internal trigonometric functions that
return angles, return values in radians. One radian equals 180°/π = 57.2958°. The
internal constant const_degree when multiplied by degrees will generate radians at full
precision. Hence, to calculate the sin of 45° use sin(45*const_degree).

const_degree = π /180= 0.017453292519943…

8. Is there a function that automatically prints all of the significant digits from my
calculation on double precision variables.

Ans. Yes. The function convert_to_string(x) will convert a number to a string and
retain all the significant digits. It will use exponential format when necessary, however.

9. Can my program read from an Excel file or write to an Excel file?

Ans. No. But there is a close option. The spreadsheet that is present in the data sets
panel can import tab delimited (*.txt) or comma delimited (*.csv) files exported from
excel. Once the data are loaded into the Scriptor spreadsheet, all the data can be
manipulated or altered by the program. The resulting spreadsheet can then be exported
to Excel if desired in tab delimited (*.txt) or comma delimited (*.csv) format.

358

10. My backup folder inside the programs folder is getting really big? Can I trim
it without causing problems.

Ans. Although the text files containing the programs that you run are very small, they
can add up if you are doing a lot of programming. It is not unusual for a student to
generate a 200 MB size folder after a semester of programming. It is recommended you
backup your entire Scriptor folder occasionally to a CD. After doing that, all the
contents of the backup folder older than a recent date can be trashed if you are running
low on disk space.

11. Somehow Scriptor is no longer registered and I do not have access to
MathScriptor anymore. How do I register my program again.

Ans. Registered programs can become un-registered for a variety of reasons, most often
because the environment was moved to a new location or a new computer. You can
register (re-register) your program as many times as necessary. If you followed
instructions, you stored your registration email, or the attached text file that was sent
with your registration email, in the Registration_Emails folder inside your environment.
Go to the preferences panel and press the Open Registration Email button. Direct the
dialogue to your registration email file. Your program will be automatically registered.
If you prefer, you can enter the information from your email by hand. You can register
your program on as many computers as you wish. But every time you copy your
environment to a new computer, you will have to register the program for use on the
new computer.

359

. (extensions)

.append · 301

.blue · 301

.cyan · 301

.green · 301

.hue · 301

.magenta · 301

.pop · 301

.red · 301

.saturation · 301

.shuffle · 301

.sort · 301

.sortwith · 301

.type · 299

.value · 301

.yellow · 301

/ (compiler directives)

// end program · 200
// program name · 200
//# load_class · 200
//# load_method · 200
//# load_module · 200

&

&crrggbb · 64

#pragma · 272
#pragma directive · 200

a

abs() · 201
acos() · 197, 201
acosh() · 197, 201
active_canvas · 201
adobe photoshop · 80

advanced topics · 157
american standard code for information

interchange · 307
anatomy of a program · 33
apple programming interface · 356
application programming interface · 307
arbitrary precision arithmetic · 55, 120, 197
arbitrary precision variational optimization
· 124

arprec complex arithmetic · 56
arprec savvy functions · 121
arprec_degree · 201
arprec_e · 201
arprec_euler · 201
arprec_factorial() · 201
arprec_pi · 201
arprec_precision · 202
arprec_random_float · 202
arprec_random_integer() · 202
arprec_set_precision · 55
arprec_set_precision() · 121, 197, 201, 202
arprec_variational_min() · 125, 202
arprec_zeta_critical_root() · 203
array · 203
array() · 71, 203, 210, 290
arrays · 38, 185
asc() · 203
ascb · 203
ascii codes · 321
asin() · 197, 203
asinh() · 197, 203
assign values to variables during

declaration · 36
assign variables as constants · 36
assignment statement · 37
assigns keyword · 53
atan() · 197, 203
atan2() · 203
atanh() · 197, 203
atom_properties_cndo() · 204, 246
atomic unit system · 349
atomic units · 341
atomic_orbital_list · 204
autostart packages · 183

360

b

backgroundtasks · 200
bessel_general · 205
bessel() · 205
bin · 205
bin() · 205, 206, 227
binary_file_read() · 205
binary_file_write() · 205
binomial() · 206
bioinformatics · 274
bit level graphics · 67
bitwiseand(· 206
bitwiseand() · 206
bitwiseor(· 206
bitwiseor() · 206
bitwisexor · 206
bitwisexor() · 206
boolean · 36, 185
boundschecking · 200
buffer_backcolor() · 206
buffer_background_color · 63, 206
buffer_clear · 206
buffer_copy_to_buffer() · 78, 206
buffer_copy_to_canvas · 62, 63
buffer_copy_to_canvas() · 69, 207, 211
buffer_copy_to_picture() · 207
buffer_create · 63
buffer_create_multiple() · 77, 207
buffer_create() · 207
buffer_draw_dashed() · 207
buffer_draw_odometer() · 207
buffer_fill_from_arrays · 69
buffer_fill_from_arrays() · 90, 208
buffer_flip_buffers() · 79, 208
buffer_gaussian_blur() · 208
buffer_height · 208
buffer_pixel_blend() · 91, 208
buffer_pixel() · 67, 208
buffer_quick_blur() · 208
buffer_rotate() · 209
buffer_save_to_jpeg() · 209
buffer_save_to_photoshop · 209
buffer_save_to_tiff · 209
buffer_to_array() · 89, 210
buffer_to_arrays · 69

buffer_to_arrays() · 90, 210
buffer_trim() · 210
buffer_width · 210
buffer_write_paintbrush() · 72, 210
buffers · 63
byref · 210
byref. · 52
byval · 52, 210

c

call · 210
call statement · 171
canvas_clear() · 211
canvas_height() · 211
canvas_update · 211
canvas_width() · 211
carbon · 356
ceil() · 211, 223
chebyshev() · 105, 212, 220
check_and_clear_input · 212
check_for_mouse_action() · 212
check_for_stop_button · 212
check_for_user_action() · 212, 213
chop · 213
chr() · 213, 296
chrb() · 213
circles and ovals · 72
class variable · 309
classes · 57, 149, 187
classes and class structure · 149
classes and creating new variables · 153
classes and inheritance · 152
classes and modules · 186
clean environment · 356
clear_graphics() · 213
clear_mouse_data · 213
clear_text_output() · 196, 213
cmy · 64
cmy() · 213
cndo/2 and indo parameterization · 248
cocoa · 356
code metrics · 172
coefficient of determination · 114
color · 36, 64, 185

361

color blending and variable transparency ·
91

color extensions · 65
color_modify · 213
color_selection_window · 65
color_selection_window() · 213
color_value · 65
color_value() · 214
comments · 8
common misconceptions · 180
comparison operators · 184
compilation · 199
compiler · 309
compiler error list · 302
compiler pragmas · 179
complex arithmetic · 41, 56
complex numbers · 325
conditionals · 44, 195
const · 36, 185, 214
const_degree · 214, 215
const_e · 214
const_eol · 214
const_pi · 214, 266
const_tab · 214
constructor · 310
constructor() · 189, 214
constructors · 58, 187
conversion factors · 337, 338
convert_to_string() · 214, 286, 290
cos() · 197, 214, 327
cosh() · 197, 201, 214
countfields() · 214
covariance matrix · 102
cross-platform fonts · 76
currency · 36, 185, 214

d

data panel · 8
data types · 185
database classes · 156
date_seconds_to_sql() · 215
date_sql_now · 215
date_sql_to_seconds() · 215
date_to_seconds() · 215

debug_save_workspace · 215
declaration · 310
declarations, organizing · 25
declare nil arrays · 38
declare variables · 35
declare variables as constants · 36
default value for color · 36
default value for numerical variables · 36
default value for strings · 36
deprecation · 311
destructor · 215, 311
destructor() · 187, 189
destructors · 58
dim · 215
disablebackgroundtasks · 200
disableboundschecking · 200
div() · 197, 198, 215
do [until]... loop [until]. · 215
double · 36, 185
double buffer graphics · 18
downto · 215
draw_arrays · 70
draw_arrays() · 216
draw_arrow() · 216
draw_axes() · 216
draw_circle() · 72, 216
draw_line · 70
draw_line() · 216
draw_oval() · 72, 216
draw_paragraph · 216
draw_rect() · 71, 216
draw_rotated_string() · 75, 216
draw_string() · 75, 217, 292
drawing objects · 69
drawing strings · 75

e

electrostatic energy · 351
else · 217
elseif · 217
encapsulation · 164
environment folder · 353
erf() · 217
erfc() · 217

362

error messages · 22
excel · 357
exception gotos · 161
exit · 217
exp() · 197, 217, 220
exponentiation · 40
extended basic language · 33
extends · 217
extends keyword · 171

f

factorial_double() · 218
factorial() · 218
false · 218
faqs · 355
fft1_inverse() · 219
fft1() · 219
fft2_complex_association() · 219
fft2_inverse() · 219
fft2() · 219
file optimizations · 178
fill_arrays · 70
fill_arrays() · 220
fill_circle() · 72, 220
fill_oval() · 72, 220
fill_rect() · 71, 220
fit_chebyshev() · 105, 220
fit_exponential() · 108, 220
fit_fourier_transform() · 220
fit_genpoly(· 108
fit_genpoly() (version 1) · 221
fit_genpoly() (version 2) · 221
fit_henderson_hasselbalch() · 110, 221
fit_lanczos() · 103, 221
fit_lanczos2() · 103, 222
fit_legendre() · 107, 222
fit_polynomial() · 102, 222
fit_scan_polynomials() · 222
fit_trendline() · 108, 223
fitting methods · 102
fitting to orthogonal polynomials · 104
fitting, and goodness and quality of a fit ·

110, 113
flip two buffers · 79

floating point hardware · 55
floor() · 223
for ... next loop · 223
force quit scriptor · 357
format() · 196, 197, 209, 224
formatting output · 50
fourier analysis of infrared absorption · 135
fourier apodization · 136
fourier self-deconvolution · 137
fourier series and fourier transforms · 133
fourier-transform methods · 219
franck_condon_overlap() · 224
ft_fold() · 219, 225
ft_linearize() · 219, 225
full screen button · 355
function returning an entire array · 52
function() · 225
functions · 51, 191
functions and reserved variables · 196
functions and subroutines · 51
fundamental constants · 335
fwt2_inverse() · 225
fwt2() · 225

g

gamma() · 225
garbage collection · 312
gauss_laguerre() · 225
gauss_legendre() · 226
gaussian unit system · 347
gauss-laguerre quadrature · 118
gauss-legendre quadrature · 115
glossary of terms used in programming ·

307
goto · 226
graphical user interface · 312
graphics · 62
graphics and text panels · 5
graphics optimizations · 177
graphics using multiple buffers · 77
graphics_font() · 73, 226, 269
graphics_forecolor() · 69, 226
graphics_stroke_width() · 69, 216, 226
graphics_use_quickdraw · 226

363

graphics, bit-mapped picture (bmp) format ·
80

graphics, joint photographic experts group
(.jpg) format · 80

graphics, photoshop (.psd) format · 80
graphing program structure · 25
grey scale · 89

h

harmonic_eigenvalue(· 226
harmonic_eigenvector(· 226
hartree · 352
help screen · 21
hermite_function() · 227
hermite() · 226
hex() · 205, 227, 313
hsv · 65
hsv() · 227
http_bytes_received · 227
http_bytes_total · 227
http_download_file() · 227
http_error_code · 227
http_get_page() · 228
http_page_received · 228
http_url_received · 228
hue-based blending · 94
hyperbolic trigonometric functions · 41
hypertext markup language · 313
hypertext transfer protocol · 313

i

ieee exponent range · 56
if ... then ... else … end if conditional · 228
if ... then ... else conditional · 228
if statement · 44
imag() · 197, 228
immutable · 313
imult() · 228
infinite loops · 357
inherits · 228
input and output · 48
input and output functions · 196
input() · 196, 228

installation of scriptor · 353
instr() · 228
instrb() · 229
int64 · 36, 185, 314
integer · 36, 185
integrals · 328
interface panel · 13, 18
interface_serial_close() · 229
interface_serial_data_received · 229
interface_serial_data_send · 229
interface_serial_initialize() · 229
interface_serial_list · 229
interface_serial_status_check() · 230
interface_serial_status_set() · 230
international system of units · 342
isession · 230
ivalue · 300
ivalue() · 205, 227, 230

j

joint photographic experts group · 315
just-in-time · 315

k

key_down_ascii_value · 231
keyboard_keycode_decipher() · 230
keyboard_monitor_activity() · 231, 282
keyboard_monitor_input() · 231
keywords, realtime analysis · 16

l

laguerrel() · 231
laguerrer() · 231
lanczos2() · 103, 222, 231
laws of logarithms · 326
left() · 217, 231
leftb() · 231
legendre() · 104, 222, 226, 232
len() · 232
lenb() · 232
library file · 353

364

line numbers · 355
lines and fills · 70
listing internal methods · 24
llvm · 356
load_class · 200
load_class() · 191, 200, 232
load_method · 200
load_method() · 191, 192, 200, 232
load_module · 200
load_module() · 191, 200, 232
log() · 197, 198, 232, 233, 326
log10() · 232
loggamma() · 197, 233
logical expressions · 42
logical operators · 184
loop · 233
loop optimizations · 174
loop until · 233
looping · 46
loops · 193
lowercase() · 233
ltrim() · 233

m

main panel · 19
matdup() · 97, 233
math · 40
math operator precedence · 42
math operators · 184
math optimizations · 178
mathscriptor mode · 355
matidn() · 97, 233
matinv() · 97, 233
matmult() · 96, 97, 233
matrand() · 98, 233
matrices · 38, 332
matrix methods · 96
matrix operators · 333
matrix_complex_diagonalize() · 234
matrix_diagonalize() · 98, 234
matrix_gauss_jordan() · 98, 234
matrix_invert() · 98, 234
matrix_print() · 193, 234
matrix_svd_backsubstitute() · 98, 100, 236

matrix_svd() · 98, 235
mattran() · 99, 234
matzero() · 99, 234
max() · 193
max(one-dimensional array) · 236
max(variables) · 236
maximum entropy and linear prediction ·

143
maximum entropy and the stock market ·

144
maximum entropy linear prediction

resolution enhancement · 146
method overloading · 54, 193
methods · 51
microseconds · 236
mid() · 236
midb() · 236
midi_notes_off · 236
midi_play_note() · 236
midi_play_real_note() · 237
midi_set_polyphony() · 237
min(one-dimensional array) · 237
min(variables) · 237
minus() · 197, 237
mod operator · 237
module · 237
modules and classes · 56
modules as method encapsulators · 166
moiré blending · 95
moiré refractive texture · 95
molecule_calculate_overlap() · 237
molecule_charge · 237
molecule_com_coords() · 237
molecule_configuration_moment() · 238
molecule_correlate_ground_state() · 238
molecule_dipole_moment() · 238
molecule_draw_simple() · 239
molecule_draw_vector() · 239
molecule_draw() · 238
molecule_external_charges() · 239
molecule_g() · 239
molecule_internal_coord() · 240
molecule_internal_coordinates() · 240
molecule_internal_to_xyz() · 240
molecule_merge_hydrogen_charges() · 240
molecule_multiplicity · 240, 246

365

molecule_name · 240
molecule_one_electron_hamiltonian() · 240
molecule_opt_scf_fast() · 241
molecule_opt_scf() · 241
molecule_orient() · 241
molecule_plot_bonding() · 242
molecule_plot_efield() · 243
molecule_plot_eigenvector() · 244
molecule_plot_pz_vector() · 244
molecule_plot_space() · 238, 239, 245
molecule_rotate() · 245
molecule_run_bond_energy_analysis() ·

245
molecule_run_psdci() · 245
molecule_run_scf() · 246
molecule_scf_dipole_moment() · 249
molecule_scf_eigenvectors() · 249
molecule_set_electron_mobility() · 249
molecule_set_repulsion_method · 249
molecule_set_scf_method · 246, 249
molecule_spin_densities · 250
molecule_xyz_to_compact() · 250
molecule_xyz_to_internal() · 250
molecules and quantum mechanics · 237
morse_eigenvalue() · 251
morse_eigenvector() · 251
mouse_down_x · 251
mouse_down_y · 251
mouse_position() · 251
mouse_up_x · 251
mouse_up_y · 251
mult() · 197, 198, 251
music panel · 12, 13

n

nature of transparency · 91
new · 251
next · 251
nil · 251
nilobjectchecking · 200
non-proportional fonts · 74
nthfield() · 252
numerical integration · 114
numerical methods · 96

numerical_best_spacing() · 252
numerical_complexity() · 252
numerical_derivative() · 252
numerical_double_data() · 252
numerical_fit_to_gaussians() · 111
numerical_fraction() · 112, 253
numerical_generate_expression() · 112, 253
numerical_interpolate_points() · 111, 253
numerical_interpolate() · 253
numerical_maxent_extend() · 254
numerical_maxent_lpc() · 254
numerical_maxent_spectrum() · 254
numerical_normalize_integral() · 254
numerical_normalize() · 254
numerical_point_in_polygon() · 254
numerical_smooth() · 254
numerical_spectral_enhance() · 255

o

objects panel · 6
oct() · 205, 227, 255, 316
open and save buttons · 21
open_all_user_pictures() · 255
open_picture_conversion_window · 255
open_user_data_file() · 256
open_user_picture_file() · 83, 256
open_user_text_file() · 256
optimization of objects · 162
optimizing comments · 159
optimizing execution speed · 172
optimizing structure · 160
optimizing transparency, maintainability

and reusability · 157
ordering of math operations · 42
oscillator_strength() · 257
output precision · 55
overloading · 317

p

paintbrush · 72
parentheses in math operations · 42
pause() · 257
phidget_analog() · 260

366

phidget_interface004() · 260
phidget_interface008() · 260
phidget_interface01616() · 260
phidget_interface222() · 261
phidget_interface888_2nd() · 261
phidget_interface888() · 261
phidget_list · 261
phidget_servo() · 262
phidget_stepper() · 263
phidget_textlcd() · 263
phidgets · 258
picture conversion window · 81, 82
picture_copy_to_buffer() · 83, 264
picture_create() · 83, 264
picture_height() · 264
picture_make_transparent() · 83, 264
picture_width() · 264
picture_write() · 84, 266
pictures using transparency · 85
pictures_blend_to_buffer() · 264
pictures_clear_all · 264
pictures, manipulating · 83
pixel · 317
plot_2d_array() · 86, 267
plot_contour() · 86, 267
plot_dashed_data() · 268, 269
plot_dashed_line() · 268
plot_data_point() · 268
plot_data_points_with_errors() · 269
plot_data_points() · 269
plot_data_with_xstrings() · 269
plot_data() · 268
plot_fontname · 129, 269
plot_fontsize · 269
plot_histogram() · 129, 270
plot_line() · 270
plot_more_data() · 270
plot_rectangle() · 270
plot_set_options() · 132, 270
plot_set_ticks() · 132, 270
plot_string() · 271
plot3d_xshift · 86, 266
plot3d_yshift · 86, 266
plot3d() · 86, 266
plotting · 86
plotting numerical data · 127

plus() · 197, 198, 271
polymorphic methods · 169
portable document format · 81
pow() · 184, 197, 217, 271
pragma() · 271
predefined graphics objects · 71
preference panel · 14
preference settings · 15
preferences · 14
prime() · 273
primeq · 273
print_destination · 273
print_with_style() · 273
print() · 189, 190, 193, 196, 273
private · 273, 281
program identification line · 35
program markup using color · 17
program name · 35
program start up with work autoloading ·

17
program structure · 16
program work window · 27, 28
properties · 22
protein_align_2to1() · 277
protein_align_by_feature() · 277
protein_align_multiple() · 278
protein_align_multiprofile() · 277, 278
protein_align() · 276, 277
protein_best_score() · 278
protein_clean_alignments() · 278
protein_distance() · 278
protein_draw_phylogenetic_tree() · 279
protein_gap_extend_penalty · 279
protein_gap_penalty · 275, 279
protein_gen_consensus() · 277, 279
protein_gen_profile() · 279
protein_homology_score() · 277, 280
protein_print() · 276, 277, 280
protein_random() · 280
protein_residue_codon_shift() · 280
protein_residue_composition() · 280
protein_residue_pair_score() · 280
protein_select_homology_method() · 275,

276, 278, 279, 280
protein_shuffle() · 281
public · 281

367

q

q_afaos_excited_singlet_state · 246, 281
q_damp_scf · 246, 281
q_double_buffer_graphics · 281
q_force_unit_eigenvectors · 281
q_greater_than() · 197, 281
q_histogram_use_external_colors · 282
q_less_than() · 197, 281
q_monitor_keyboard · 282
q_mouse_data_available · 282
q_phidget_raw · 282
q_plot_angular_mode · 282
q_plot_fill · 282
q_plot_log_x · 282
q_plot_log_y · 282
q_plot_reverse_x_axis · 282
q_plot_zero_line · 282
q_show_mouse_rectangle · 282
q_use_external_parameters · 246, 282
quicktime · 12
quicktime instruments · 12

r

ran2 · 282
ran2_seed · 283
random_gaussian · 283
random_integer_sequence() · 283
random_integer() · 283
random_number · 283
random_seed · 283
read_binary_file() · 283
real number · 317
real() · 197, 284
redim · 284
redim statement · 38
redim_multiple() · 284
reduce eye strain · 18
references for chapter 4 · 148
registering scriptor · 14
rem · 284
remove line numbers · 355
replace() · 284
replaceall · 284

replaceallb · 284
replaceb · 284
reset button · 355
return · 284
rgb · 64
rgb() · 185, 210, 264, 284
right() · 217, 284
rightb · 284
rnd · 284
round_to_precision() · 197, 284, 285
round() · 284
rtrim() · 285
run and/or stop buttons · 355
run button · 20

s

sans or sans-serif fonts · 74
save_binary_file() · 285
save_spreadsheet() · 285
save_user_text_file() · 285
saving and loading graphics files · 79
schrödinger equation · 350
scriptorwin environment · 353
secure socket layer · 318
select case · 195, 285
select case statement · 45, 211
selected derivatives · 327
selected mathematical rules · 324
series expansions · 326
serif fonts · 73
set_graphics_slider · 37
set_graphics_slider() · 285
set_text_style() · 285
set_to_data · 285
set_to_graphics · 88, 285
set_window_size() · 285
sf1 · 51
sf1() · 286
sf2() · 286
show_progress_bar() · 196, 286
show_progress_line() · 196, 286
si derived units · 345
si units · 342
significant digits · 357

368

simple mode · 16, 24
sin() · 182, 197, 198, 286, 327
single · 36, 185
singular value decomposition · 99
sinh() · 197, 203, 286
spreadsheet · 10, 48
spreadsheet data importing · 10
spreadsheet data manipulation · 9
spreadsheet rows and columns · 9
spreadsheet saving and opening · 11
spreadsheet sorting · 10
spreadsheet_add_column() · 286
spreadsheet_add_row · 286
spreadsheet_cell() · 286
spreadsheet_column_width() · 287
spreadsheet_create() · 287
spreadsheet_delete_column() · 287
spreadsheet_delete_row() · 287
spreadsheet_eomccsd_open() · 287
spreadsheet_filename · 287
spreadsheet_flip_columns() · 287
spreadsheet_flip_rows() · 287
spreadsheet_gaussian_cis_open() · 287
spreadsheet_gaussian_cis_transitions_open(

) · 288
spreadsheet_gaussian_open() · 288
spreadsheet_gaussian_orbitals_open() · 288
spreadsheet_gaussian_tddft_open() · 288
spreadsheet_header() · 287, 288
spreadsheet_insert_column() · 288
spreadsheet_lock · 288
spreadsheet_maxcolumn · 288
spreadsheet_maxrow · 289
spreadsheet_mndoci_open() · 289
spreadsheet_pdb_open(· 289
spreadsheet_redcolumn · 289
spreadsheet_redrow · 289
spreadsheet_row_height · 289
spreadsheet_sacci_open() · 288, 289
spreadsheet_set_row_colors() · 289
spreadsheet_spike_open() · 289
spreadsheet_to_buffer() · 289
spreadsheet_update_header() · 290
sqrt() · 290
squares and rectangles · 71
stackoverflowchecking · 201

static · 290
step · 290
str() · 189, 190, 209, 276, 277, 286, 290
strcomp · 290
string · 36, 185
string graphics · 73
string optimizations · 175
string speed enhancements · 176
string_block_convert() · 290
string_countfields_quoted() · 290
string_countfields_regex() · 291
string_decipher_blowfish() · 291
string_decode_base64() · 291
string_decode_case() · 291
string_editdistance() · 291
string_encipher_blowfish() · 291
string_encode_base64() · 291
string_encode_case() · 291
string_hexbyte() · 291
string_instr_quoted() · 292
string_instr_reverse() · 292
string_join_quoted() · 292
string_line_ending() · 292
string_metaphone() · 292
string_nthfield_quoted() · 292
string_pixel_height() · 292
string_pixel_width() · 292
string_random_quotation · 292
string_random() · 292
string_regex_options() · 293
string_regex_replace() · 294
string_regex_search() · 295
string_repeat() · 295
string_replace_lineendings() · 295
string_reverse() · 295
string_show_gremlins() · 296
string_soundex() · 296
string_speak() · 196, 296
string_split_by_regex() · 296
string_split_quoted() · 296
string_split() · 296
string_time_and_date · 296
string_zap_gremlins() · 296
string_zap_multiple_spaces() · 296
strong versus weak typing · 168
structured query language · 318

369

sub · 296
subroutines · 191
subtractive blending · 93
swap() · 296
system_compile_time · 297
system_compiler_optimization_level · 297
system_computer_information · 297
system_convert_filename() · 297
system_font_available() · 298
system_fontname · 73, 76
system_fontname_label · 73, 76
system_fontname_mono · 73, 76, 297, 298
system_fontname_narrow · 73, 76
system_fontname_sans · 73, 76, 298
system_fontname_serif · 73, 76, 298
system_fontname() · 297, 298
system_heap_memory · 298
system_number_of_fonts · 298
system_os · 298
system_scriptor_version · 298
system_verbosity · 299

t

tabbed integrated development environment
· 4

tan() · 197, 299, 327
tanh() · 197, 203, 299
templates · 20
thread_compiletime_error · 299
thread_evaluate_string_expression() · 299
thread_launch() · 299
ticks · 299
tips · 29
titlecase · 299
transmission control protocol · 319
transparency blending · 91
trash button · 21
trigonometric and geometric relationships ·

324
trigonometric functions · 40, 357
trim() · 299

troubleshooting · 355
true · 299
two-dimensional arrays · 39

u

ubound() · 193, 229, 299
update_time · 300
uppercase() · 300

v

val() · 213, 300
valid operators · 184
value() · 193, 300
variable names · 158
variables of type color · 67
variant_type() · 300
variants and polymorphism · 168
vectors · 38
vectors and tensors · 330
versions of scriptor · 356

w

wavenumber · 352
wend · 300
while · 300
working with color pictures · 90

y

yfill_reference_value · 282

z

zeta_critical_abs() · 301
zeta_critical_root() · 203, 301
zeta() · 300

	

